簡易檢索 / 詳目顯示

研究生: 陳楠岳
Chen, Nan-Yueh
論文名稱: 低成本之紅外線葡萄糖濃度感測器
A Low Cost NIR Glucose Sensor
指導教授: 張凌昇
Jang, Ling-Shang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 53
中文關鍵詞: 葡萄糖傳感器雙波長雙波長流體裝置近紅外線葡萄糖溶液光脈衝邊緣分析上升邊緣響應
外文關鍵詞: glucose sensor, dual wavelength, dual optical wavelength fluidic device (DOWFD), near infrared (NIR), glucose solution, pulse-edge method, rising-edge response
相關次數: 點閱:136下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提供一個低成本的的雙波長流體裝置量測葡萄糖濃度。雙波長流體裝置是使用兩個不同波長的發光二極體和兩個檢測的光電二極管,達到量測待測液體中對不同波長的吸收差異,藉此取代傳統光譜儀和分光光度計中昂貴的光纖光路設備和精密透鏡,達到減少成本和體積的目的。
    雙波長流體裝置利用兩個特殊的量測波長,分別是近紅外光譜中的1450 奈米和1650 奈米的光源量測甲基丙烯酸甲酯流道中,光學路徑約2 毫米的待測液體。本文利用光脈衝的邊緣特性,在高頻率和低功率的光源下,量測光線通過葡萄糖溶液後,在上升邊緣響應,並計算不同波長對濃度造成的差異。此雙波長流體裝置為一個量測人體血液中含葡萄糖的濃度的傳感器,並具有成本效益,結構簡單和重複使用等優點。

    A low-cost and compact complete glucose sensor dedicated for dual wavelength measurements under conditions of flow injection analysis has been developed. The dual optical wavelength fluidic device (DOWFD) is made of two emitter light emitting diodes (LEDs) and two detector photodiodes only, without any additional fibers and lenses. The DOWFD was fabricated similarly to the optical absorption scheme made from poly methyl meth acrylate (PMMA) micro-fluidic. Puled dual-wavelength LEDs source are the 1450 nm wavelength and the 1650 nm wavelength under near infrared (NIR) spectrum range. An absorbance path length of 2 mm enables glucose solution to be detected from 1% to 25% concentration. The thesis presents a pulse-edge method form measuring the rising-edge response of waveform under the light source of high frequency and low intensity. The DOWFD provides a cost-effective, simple structure that could be deployed in a range scenario for blood glucose detection.

    中文摘要 i Abstract ii Acknowledgment iii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Purpose 2 1.3 Organization of Dissertation 5 Chapter 2 Theory Overview 7 2.1 Optical Instrumentation 7 2.1.1 NIR Scope 7 2.1.2 NIR Instrumentation 9 2.2 Beer-Lambert Law 12 2.3 Time-response Analysis 14 2.4 Model of SUT 16 2.4.1 Theoretical Foundations 16 2.4.2 Equivalent Circuit Model 18 Chapter 3 Materials and Methods 20 3.1 Technology for Optical Readout Device 20 3.2 DOWFD Fabrication 22 3.2.1 Micro-fluidic Fabrication 22 3.2.2 Optical Path 24 3.3 Experimental Setup 26 3.3.1 Functional Black 26 3.3.2 Sample Preparation 27 3.3.3 Measurement Procedure 28 Chapter 4 Results and Discussion 31 4.1 Time Responses 31 4.1.1 Bubble Effects 32 4.1.2 Temperature Effects 33 4.1.3 Calibration waveform 35 4.2 Glucose Concentrations 36 4.2.1 Glucose with DI Water 37 4.2.2 Glucose of Human Blood and PBS 38 4.3 Results Analysis 40 4.3.1 Glucose Variation with DI Water 40 4.3.2 Glucose Variation of Human Blood and PBS 41 Chapter 5 Conclusion and Future Work 45 Reference 47

    [1] J.E. Shaw, R.A. Sicree, P.Z. Zimmet, ”Global estimates of the prevalence of diabetes for 2010 and 2030,” Diabetes Research and Clinical Practic, Vol. 87, Iss. 1, pp. 4-14, 2009.
    [2] L.E. Egede, C. Ellis, “Diabetes and depression: Global perspectives,” Diabetes Research and Clinical Practice, Vol. 87, Iss. 3, pp. 302-312, 2010.
    [3] I. Rudkowska, “Lipid lowering with dietary supplements: focus on diabetes,” Maturitas, Vol. 72, Iss. 2, pp. 113-116, 2012.
    [4] P. Hossain, B. Kawar, and M. E. Nahas, “Obesity and diabetes in the developing world —a growing challenge,” The New England Journal of Medicine, Vol. 356, pp. 213-215, 2007.
    [5] S. Smyth, A. Heron, “Diabetes and obesity: the twin epidemics,” Nature Medicine, Vol. 12, pp. 75-80, 2005.
    [6] P. Rossetti, S. Pampanelli, C. FanelliI, F. Porcellatip, E. Costa, E. Torlone, L. Scionti, G. B. Bolli, “Intensive replacement of basal insulin in patients with type 1 diabetes given rapid-acting insulin analog at mealtime,” Diabetes Care, Vol. 26, No. 5, pp. 1490-1496, 2003.
    [7] B.H. Ginsberg, “An overview of minimally invasive technologies,” Clinical Chemistry, Vol. 38, No. 9, pp. 1596-1600, 1992.
    [8] J.D. Newman, A.P.F. Turner, “Home blood glucose biosensors: a commercial perspective,” Biosensors and Bioelectronics, Vol. 20, Iss. 12, pp. 2435-2453, 2004.
    [9] E.H. Yoo and S.Y. Lee, “Glucose biosensors: An overview of use in clinical practice,” Sensors, Vol. 10, pp. 4558-4576, 2010.
    [10] C.B. Snowden, T.R. Miller, Alan. F. Jensen, B.A. Lawrence, “Costs of Medically Treated Craniofacial Conditions,” Public Health Report, Vol. 118, pp. 10-17, 2003.
    [11] N. Manjaro, “A proposal for the use of wireless technology in healthcare,” Engineering Management Field Project, 2012.
    [12] B.T. Allen, E.R. DeLong, J.R. Feussner, “Impact of Glucose Self-Monitoring on Non-lnsulin-Treated Patients With Type II Diabetes,” Mellitus Diabetes Care, Vol. 13, No. 10, pp. 1044-1050, 1990.
    [13] P. Ruggenenti, F. Gaspari, A. Perna, G. Remuzzi,”Cross sectional longitudinal study of spot morning urineprotein:creatinine ratio, 24 hour urine protein excretion rate, glomerular filtration rate, and end stage renal failure in chronic renal disease in patients without diabetes,“ British Medical Journal, Vol. 316, 1998.
    [14] C.W. Chia, C.D. Saudek, "Glucose sensors: toward closed loop insulin delivery" Endocrinology and Metabolism Clinics of North America,” Vol. 33, pp. 175-195, 2004.
    [15] H. Bui, K. Perlman, D. Daneman, “Self-monitoring of blood glucose in children and teens with diabetes pediatric,” Diabetes, Vol. 6, Iss. 1, pp. 50-62, 2005.
    [16] E.D. Mollema, F.J. Snoek, F. Pouwer, R.J. Heine, H. M.V.D. Ploeg , “ Diabetes Fear of Injecting and Self-Testing Questionnaire,” Diabetes Care, Vol. 23, No 6, pp. 765-769, 2000.
    [17] P.J. Stout, J.R. Racchini, M.E. Hilgers, S.E. Noujaim, “Continuous glucose monitoring: key challenges to replacing episodic SMBG,” Diabetes Research and Clinical Practice, Vol. 74, Supplement 2, pp. 97-S100, 2006.
    [18] L. Olansky, L. Kennedy, “Finger-Stick Glucose Monitoring,“ Diabetes Care, Vol. 33, no. 4, pp. 948-949, 2010.
    [19] B.W. Morris, S. Macneil, C.A. Hardisty, S. Heller, C. Burgin, T.A. Gray , “Chromium homeostasis in patients with type II (NIDDM) diabetes,” Journal of Trace Elements in Medicine and Biology, Vol. 13, Iss. 1-2, pp. 57-61, 1999.
    [20] J. Ruiz, H. Blanche, R.W. James, M.B. Garin, C. Vaisse, G. Charpentier, N. Cohen, A. Morabia, P. Passa, P. Froguel, “Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes,” The Lancet, Vol. 346, Iss. 8979, pp. 869-72, 1995.
    [21] J. Wang,“Electrochemical Glucose Biosensors,” Chemical Reviews,, Vol. 108, no. 2, pp. 814-825, 2008.
    [22] V. Bellon, J.L. Vigneau, M. Leclercq, “Feasibility and performances of a new, multiplexed, fast and low-cost fiber-optic NIR spectrometer for the on-line measurement of sugar in fruits,” Applied Spectroscopy, Vol. 47, Iss. 7, pp. 1079-1083, 1993.
    [23] J. Malinen , M. Känsäkoski , R. Rikola , C.G. Eddison , “LED-based NIR spectrometer module for hand-held and process analyser applications,” Sensors and Actuators B: Chemical, Vol. 51, Iss. 1-3, pp. 220-224, 1998.
    [24] H. Hasegawa, R.E. Howard, “Optical absorption spectrum of hydrogenic atoms in a strong magnetic field,” Journal of Physics and Chemistry of Solids, Vol. 21, Iss. 3-4, pp. 179-198, 1961.
    [25] D.C Klonoff, “Noninvasive blood glucose monitoring,” Diabetes Care, Vol. 20, pp. 433-437, 1997.
    [26] B. Rabinovitch, W.F. March, R.L. Adams," Noninvasive glucose monitoring of the aqueous humor of the eye. Part I measurement of very small optical rotations,” Diabetes Care, Vol. 5, pp. 254-258, 1982.
    [27] G.L. Cote, M.D. Fox, R.B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Transactions Biomedical Engineering, Vol. 39 pp. 752-756, 1992.
    [28] M.J. Goetz, G.L. Cote, W.E. March, R. Erckens, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Transactions Biomedical Engineering, Vol. 42, pp.728-731, 1995.
    [29] S. Pan, H. Chung, M.A. Arnold, G.W. Small, ”Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Analytical Chemistry, Vol. 68, pp. 1124-1135, 1996.
    [30] I. Gabriely, R, Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, H. Shamoon, ” Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care, Vol. 22, pp. 2026-2032, 1999.
    [31] M.R. Robinson, R.P. Eaton, D.M. Haaland, G.W. Koepp, E.V. Thomas, B.R. Stallard, P.L Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clinical Chemistry, Vol. 38, pp. 1618-1622, 1992.
    [32] J.S. Maier, S.A. Walker, S. Fantini, M.A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissue in the near infrared,” Optics Letters, Vol. 19, Iss. 24, pp. 2062-2064, 1994.
    [33] H.A. MacKenzie, H.S. Ashton, S. Spiers, Y. Shen, S.S. Freeborn, J. Hannigan, J. Lindberg, P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chemistry, Vol.45, No 9, pp. 1587-1595, 1999.
    [34] Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology, Vol. 40, Iss. 4, pp. 511-520, 2003.
    [35] P.R. Moreno, R.A. Lodder, K. R. Purushothaman, W.E. Charash, W.N. O’Connor, J.E. Muller, “Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy,” Circulation, Vol. 105, pp. 923-927, 2012.
    [36] Jun Chen, Mark A. Arnold, Gary W. Small, "Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions," Analytical Chemistry, Vol. 76, Iss. 18, pp. 5405-5413, 2004.

    [37] N. Kang, S. Kasemsumran, Y.A. Woo, H.J. Kim, Y. Ozaki, “Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy,” Chemometrics and Intelligent Laboratory Systems ,Vol. 82, Iss. 1-2, pp.90 - 96, 2006.
    [38] J.Wang, R. Xu, S. Yang,“Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions,” Environ Monit Assess, Vol. 157, pp.459-469, 2009.
    [39] R.J. Leicester, R.J. Nicholls, C.V. Mann, “Infrared coagulation: a new treatment for Hemorrhoids,” Diseases of the Colon & Rectum, Vol. 24, no. 8, pp. 602-605, 1981.
    [40] J. Zhang, H. Chen, L. Xu, Y. Gu, “The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model,” Journal of Controlled Release, vol. 131, Iss. 6, pp. 34-40, 2008.
    [41] H. Lehmann, G. Schwotzer, P. Czerney, G.J. Mohr, “Fiber-optic pH meter using NIR dye,” Sensors and Actuators B: Chemical, vol. 29, Iss. 1-3, pp. 392-4000, 1995.
    [42] J. Laufer, C. Elwell, D. Delpy, P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Physics in Medicine and Biology, Vol. 50, No. 18, pp. 4409-4428, 2005.
    [43] I. Swaid, D. Nickel, G.M. Schneider, “NIR-spectroscopic investigations on phase behavior of low-Volatile organic substances in supercritical carbon dioxide,” Fluid Phase Equilibria, Vol. 21,Iss. 1-2, pp. 95-112, 1985.
    [44] S. Kasemsumran, Y.P. Du, K. Maruo, Y. Ozaki, “Selective removal of interference signals for near-infrared spectra of biomedical samples by using region orthogonal signal correction,” Analytica Chimica Acta, Vol. 526, Iss. 2, pp. 193-202, 2004.
    [45] R.N. Handcock, D.L. Swain, G.J. Bishop-Hurley, K.P. Patison, T. Wark, P. Valencia, P. Corke, C.J. O’Neill, “Monitoring animal behavior and environmental interactions using wireless sensor networks, GPS collars and satellite remote,” Sensors, Vol. 9, pp. 3586-3603, 2009.
    [46] B. Tang, L. J. Cui, K.H. Xu, L.L Tong, G.W. Yang, L.G. An, “A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications,” ChemBioChem, Vol. 9, Iss. 7, pp. 1159 -1164, 2008.
    [47] J. Suzuki, N. Katoh, “A simple and cheap method for measuring serum vitamin A in cattle using only a spectrophotometer,” Japanese Journal of Veterinary Science, Vol. 52, No. 6, pp. 1281-1283, 1990.
    [48] J.E. Stewart, W.S. Gallaway, “Diffraction anomalies in grating spectrophotometers,” Applied Optics, Vol. 1, Iss. 4, No. 4, pp. 421-429, 1962.
    [49] D.J. Segler, “LED TV: Technology Overview and the DLP Advantage,” Texas Instruments Inc., DLP® Products.
    [50] S. Pellegrini, R.E. Warburton, L.J.J. Tan, J.S. Ng, A.B. Krysa, K.Groom, J.P.R. David, S. Cova, M.J. Robertson, G.S. Buller, “Design and Performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE Journal of Quantum Electronics, Vol. 42, No. 4, pp. 397-403, 2006.
    [51] B. Dick, A. Gierulski, G. Marowsky, G. A. Reider, “Determination of the nonlinear optical susceptibility X(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Applied Physics B: Lasers and Optics, Vol. 38, No 2, pp. 107-116, 1985.
    [52] A. Beer, J. Plücker, “Einleitung in die Elektrostatik : die Lehre vom Magnetismus und die Elektrodynamik,” Braunschweig : F. Vieweg und Sohn, 1865.
    [53] S. Attal, R.Thiruvengadathan, O. Regev, “Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy,” Analytical Chemistry, Vol. 78, No. 23, pp. 8098-8104, 2006.
    [54] S.J. Matcher, M. Cope, D.T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Physics in Medicine and Biology, Vol. 38, No. 1, pp. 177-196, 1993.
    [55] H. Fellner-Feldegg ,“Measurement of Dielectrics in the Time Domain,” The journal of Physical Chemistry, Vol. 73, pp. 616-623, 1969.
    [56] M.K. Barnoski, M.D. Rourke, S.M. Jensen, R.T. Melville, “Optical time domain reflectometer,” Applied Optics, Vol. 16, No. 9, pp. 2375-2379, 1977.
    [57] J. Ledieu, P.D. Ridder, P.D. Clerck, S. Dautrebande, “A method of measuring soil moisture by time-domain reflectometry,” Journal of Hydrology, Vol. 88, Iss. 3-4, pp. 319-328, 1986.
    [58] B. Hjorth, “EEG analysis based on time domain properties,” Electroencephalography and Clinical Neurophysiology, Vol.29, Iss. 3, pp. 306-310,1970.
    [59] V. Misra, H. Mishra, H.C. Joshi, T.C. Pant, ”An optical PH sensor based on excitation energy transfer in Nafion film,” Sensors and Actuators B: Chemical, Vol. 82, Iss. 2-3, pp. 133-141, 2001.
    [60] M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, M. Wojtkowski, ”Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Optics Express, Vol. 16, Iss. 9, pp. 6008-6025, 2008.
    [61] D. Grosenick, H.Wabnitz1, K.T. Moesta, J. Mucke, M. Möller, C.Stroszczynski, J. Stößel, B. Wassermann, P.M. Schlag, H. Rinneberg, ”Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Physics in Medicine and Biology, Vol. 49, No. 17, pp.1165-1181, 2003.
    [62] G. Breithardt, T. Wichter, T. Fetsch, T. Seifert, M. Borggrefe, M. Shenasa, L. Reingardt, ”The signal-averaged ECG: time-domain analysis,” European Heart Journal, Vol. 14, Iss. suppl E, pp. 27-32. 1993.
    [63] P. H. Bastiaens, A. Squire, ”Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell trends in cell,” Trends in Cell Biology, Vol. 9, pp. 48-52, 1999.
    [64] M.J. Cole, J. Siegel, S.E.D. Webb, R. Jones, K. Dowling, M.J. Dayel, D. Parsons-Kara, P.M.W. French, M.J. Lever, L.O.D. Sucharov, M.A.A. Neil, R. Juškaitis, T. Wilson,” Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” Journal of Microscopy, Vol. 203, Iss. 3, pp. 246-257, 2001.
    [65] D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, P. French, ”Time-domain fluorescence lifetime imaging applied to biological tissue,” Photochemical & Photobiological Sciences, Vol 3, Iss. 8, pp. 795-801, 2004.
    [66] G. Liebsch, I. Klimant, C. Krause, O.S. Wolfbeis, ”Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing,” Analytucal Chemistry, Vol. 73, pp. 4354-4363, 2001.
    [67] L.J. McCartney, J.C. Pickup, O.J. Rolinski, D.J. S. Birch, ”Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A,” Analytical Biochemistry, Vol. 292, Iss. 2, pp. 216-221, 2001.
    [68] J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, D.J.S. Birch, ”Fluorescence-based glucose sensors,” Biosensors and Bioelectronics, Vol. 20, Iss. 12, pp. 2555-2565, 2005.
    [69] J. Huang, H. Lru, A. Tan, J. Xv, X. Zhao, ”A dual-wavelength light-emitting diode based detector for flow- injection analysis process analysers,” Talanta, Vol. 39, Iss. 6, pp. 589-592, 1992.
    [70] A.Fonseca, I.M.R, ”A multichannel photometer based on an array of light emitting diodes for use in multivariate calibration,” Analytica Chimica Acta, Vol. 522, Iss. 2, pp. 223-229, 2004.
    [71] M. O’Toole, D. Diamond, ”Absorbance based light emitting diode optical sensors and sensing devices,” Sensors, Vol. 8(4), pp. 2453-2479, 2008.
    [72] G.M. Reaven, C. Hollenbeck, C.Y. Jeng, M.S. Wu, Y.D.I. Chen, “Measurement of Plasma Glucose, Free Fatty Acid, Lactate, and Insulin for 24 h in Patients With NIDDM,” Diabetes, Vol. 37, No. 8, 1020-1024,1988.
    [73] R. Liu, W. Chen, Y. Chen, K. Xu, ”Influence of temperature on the precision of noninvasive glucose sensing by near-infrared spectroscopy,” Proceedings of SPIE, Vol. 6863, pp. 68630Q-1-68630Q-10, 2008.
    [74] A.G. Hadd, S.C. Jacobson, J. M. Ramsey, ”Microfluidic assays of acetyl cholinesterase inhibitors,” Analytical Chemistry, Vol. 71, pp. 5206-5212, 1999.
    [75] M.S. Kim, J.H. Yeon, J.K. Park, ”A microfluidic platform for 3-dimensional cell culture and cell-based assays,” Biomed Microdevices, Vol. 9, pp. 25-34, 2007.
    [76] D. C. Duffy, H.L. Gillis, J. Lin, N.F. Sheppard, G.J. Kellogg, ”Micro fabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays,” Analytical Chemistry, Vol. 71, pp. 4669-4678, 1999.

    下載圖示 校內:2017-09-12公開
    校外:2017-09-12公開
    QR CODE