簡易檢索 / 詳目顯示

研究生: 黃君威
Huang, Jiun-Wei
論文名稱: 安定化熱處理對摩擦攪拌Mg-9Li-2Al-1Zn鎂合金拉伸性質及沖剪表面之影響
Effects of Stabilization Heat Treatment on the Tensile Mechanical Properties and Blanking Surface of Friction Stir Processed Mg-9Li-2Al-1Zn Magnesium Alloy
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 鎂鋰合金摩擦攪拌製程拉伸性質沖剪表面
外文關鍵詞: Mg-Li alloy, FSP, Tensile mechanical properties, Blanking surface
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金具有低密度、制振性佳及高比強度等優點,因此常用於交通工具與3C產業等之結構材料。在鎂合金中添加鋰元素可改善鎂合金之成型性,且有降低密度的效果。前人研究指出,雙相鎂鋰合金擠型材的第二相α相以板狀分散在基地中,於受力情況下易成為破壞起始點。為達改變第二相分布型態之目的,本研究以摩擦攪拌製程(FSP)對Mg-9Li-2Al-1Zn (LAZ921)雙相鎂鋰合金擠型板材進行改質,並以安定化熱處理使材料穩定。之後將擠型材、摩擦攪拌材(FSP材)以及摩擦攪拌並進行安定化熱處理的材料(FSP-S材)進行拉伸試驗,以觀察改質前後破壞型態的改變。另外將三種材料以沖剪製程加工,觀察沖剪面以評估第二相α相的分布型態與延性對成形性的影響。
    擠型材經摩擦攪拌製程後可能殘留過飽和固溶狀態,FSP材可能因此有長時間自然時效現象;將FSP材進行安定化熱處理能有效縮短時效時間,並根據X-ray繞射峰2θ值於安定化熱處理後之偏移,推測安定化熱處理消除了過飽和固溶狀態。基地β相的硬度於安定化熱處理前後有明顯變化,可能因此造成FSP材與FSP-S材在拉伸性質與沖剪表面上的差異。
    微觀組織方面,摩擦攪拌製程後SZ區中包含顆粒狀組織與網絡狀組織:網絡狀組織即α相分布在β相的晶粒中與晶界上,與文獻描述的析出型態相仿;顆粒狀組織則是由細小等軸的α 相分布在基地中。
    將擠型材、FSP材及FSP-S材進行拉伸試驗,了解拉伸性質與破壞機制於改質前後的差異。甫經摩擦攪拌後的FSP材有較擠型材高的抗拉強度,但幾乎沒有延性,拉伸過程中缺陷可能形成在基地β相上;摩擦攪拌並安定化後的FSP-S材之拉伸性質則與擠型材相近,且破壞都起源於α相與α/β相界。
    摩擦攪拌製程進行時,在熱影響區(HAZ)中的θ相與AlLi相可能於摩擦攪拌時分解進入基地,在安定化熱處理後θ相重新析出,因其析出強化效果較AlLi相佳,使得HAZ硬度上升,造成FSP-S材各區域硬度不均勻的現象。由於不均勻的硬度性質,在垂直摩擦攪拌進給方向的拉伸測試中,試片都斷裂在硬度較高、或是硬度不均勻之處。
    沖剪面觀察的部分,在F材的沖剪面上發現平行擠型方向的裂紋,可能與板狀第二相有關;FSP材則可以發現由於β相的脆性而形成的缺陷;FSP-S材在沖剪後可獲得品質最佳的沖剪面,原因可能是屬於破壞起點的第二相在摩擦攪拌後細化了,且β相的脆性現象在安定化處理後有所改善。

    Magnesium alloys have advantages such as low density, high specific strength and good mechanic damping properties. They are often applied for 3C and transportation industries as structural materials. Magnesium alloys with adding lithium element can make the density lower and the workability better than pure magnesium. A recent report suggested that the second phase α with plank-like shape in extruded dual-phase Mg-Li alloy might be the initial points of fracture under tensile test. In order to redistribute the second phase α, friction stir processing (FSP) followed by stabilization heat treatment is applied for trying to improve the mechanical properties of extruded Mg-9Li-2Al-1Zn alloy (LAZ921-F). This study focus on the effects of distribution of the second phase α on the tensile fracture characteristics and the effects of the ductility change on the roughness of blanking surfaces of Mg-9Li-2Al-1Zn alloy after FSP (LAZ921-FSP) and stabilization heat treatment (LAZ921-FSP-S).
    According to the shifts of X-ray diffraction peaks, supersaturated solid solution induced by FSP may be eliminated after stabilization heat treatment. Stabilization heat treatment also makes aging time less. The β phase greatly affected by stabilization heat treatment may dominate the changes of tensile mechanical properties of LAZ921-FSP.
    In the microstructure of FSPed LAZ921 magnesium alloys, there are two kinds of microstructures in SZ. The one is composed of equal-axed α particles. The other is composed of α phase on the grain boundaries of β phase and the α phase is dispersed in the matrix with needle-like shapes.
    On tensile mechanical properties, the experimental results indicate that LAZ921-FSP has better strength and worse elongation than LAZ921-F. The initial points of fracture in LAZ921-FSP were located on β phase. LAZ921-FSP-S and LAZ921-F have similar tensile mechanical properties and similar initial points of fracture occurred within α phase and α/β interfaces.
    The AlLi phase and θ phase in heat affected zone (HAZ) may be dissolved into matrix during FSP. Because that the θ phase re-precipitates after stabilization heat treatment and induces greater precipitation hardening effect than that induced by AlLi phase, the hardness of HAZ is higher than other zones affected by FSP. The fractures caused by tensile stress perpendicular to processing direction are on the zones with higher hardness and where hardness difference ocurr.
    After blanking, there are cracks parallel to extrusion direction found in LAZ921-F. Also, there are cracks induced by blanking found in LAZ921-FSP due to the brittleness of β phase. The quality of blanking surfaces of LAZ921-FSP-S is better than LAZ921-F and LAZ921-FSP because of finer second phase α fined by FSP and better ductility improved by stabilization heat treatment.

    總目錄 摘要……. I Abstract… III 誌謝……. V 總目錄…. VII 表目錄…. IX 圖目錄…. X 第一章 前言 1 第二章 文獻回顧 3 2.1 鎂鋰合金 3 2.1.1 鋰及其他添加元素效應 3 2.1.2 鎂鋰合金之相關研究 4 2.2 摩擦攪拌銲接與摩擦攪拌製程 5 2.2.1 簡介及原理 5 2.2.2 摩擦攪拌製程後之組織特性 6 2.3 沖剪特性 7 第三章 實驗方法 16 3.1 實驗材料與摩擦攪拌製程 16 3.2 自然時效觀察與安定化熱處理 16 3.3 顯微組織觀察 17 3.4 微硬度測試 18 3.5 X-ray繞射分析 18 3.6 拉伸試驗 19 3.7 沖剪表面特性觀察 20 第四章 實驗結果 27 4.1 微觀組織之摩擦攪拌及安定化熱處理效應 27 4.2 硬度性質之摩擦攪拌及安定化熱處理效應 28 4.2.1 自然時效與安定化熱處理效應 28 4.2.2 摩擦攪拌及安定化熱處理效應 28 4.3 X-ray繞射分析 29 4.4 拉伸性質 29 4.4.1 平行TD方向之拉伸破斷位置 29 4.4.2 平行PD方向拉伸性質之摩擦攪拌及安定化熱處理效應 30 4.5 沖剪表面特性 30 第五章 討論 54 5.1 安定化熱處理效應 54 5.2 拉伸破壞行為 55 5.2.1 拉伸破斷面形貌 55 5.2.2 拉伸破壞機制 56 5.3 沖剪表面缺陷之成因 58 5.4 HAZ區硬度較高之成因 58 第六章 結論 77 參考文獻. 79 自述……. 83   表目錄 表3 1 LAZ921化學組成(wt%) 21 表3 2摩擦攪拌製程參數 21 表4 1 LAZ921-F之α相面積率(%) 31 表4 2三種材料在ED/PD面之α相面積率(%) 31 表4 3 F材中兩相之微硬度值(Hv) 32 表4 4 F材之織構強度分析(%) 32 表4 5 FSP材之織構強度分析(%) 33 表4 6 FSP-S材之織構強度分析(%) 33 表4 7 平行TD方向拉伸之拉伸數據 34 表5 1 F材與F-S材拉伸性質比較 60 表5 2 FSP材兩相之奈米壓痕試驗結果 61 表5 3 F-320材之微硬度與奈米壓痕試驗結果 61 表5 4 鋁、鎂及鋰之原子半徑[39] 62 表5 5 各材料ED/PD面β相(220)面繞射峰之2θ值 62 表5 6 HAZ區與模擬熱處理材於ED/PD面之微硬度比較(Hv) 63   圖目錄 圖2 1 鎂鋰二元系統之合金密度與鋰添加量之關係[4] 9 圖2 2 鎂鋰二元相圖[5] 10 圖2 3 Mg-Li-Al於100℃之三元相圖[16] 10 圖2 4 鋁鋰二元相圖[21] 11 圖2 5 Mg-12Li-xAl擬二元相圖[22] 11 圖2 6 摩擦攪拌製程各影響區域示意圖[3] 12 圖2 7 摩擦攪拌後之洋蔥環組織示意圖[30] 13 圖2 8 沖剪過程中各個變形階段[33] 14 圖2 9 沖剪剪切面之各區域破壞特徵[33, 34] 15 圖3 1 LAZ921-F板材尺寸及方位 22 圖3 2摩擦攪拌製程示意圖 22 圖3 3攪拌棒凸梢尺寸示意圖 23 圖3 4 PD面之微硬度試驗壓痕位置示意圖 23 圖3 5平行TD方向拉伸試片尺寸示意圖 24 圖3 6摩擦攪拌後平行TD方向拉伸試片取樣示意圖 24 圖3 7摩擦攪拌後平行PD方向之拉伸試片取樣示意圖 25 圖3 8平行ED/PD方向拉伸試片尺寸示意圖 25 圖3 9沖剪試片尺寸示意圖 26 圖3 10沖剪試片取樣示意圖 26 圖4 1 LAZ921-F之OM金相圖 35 圖4 2 FSP-S材之微觀組織:(a) PD面全貌,(b) AS側TMAZ區(白色虛線處顆粒狀組織),(c)SZ區中央,(d) SZ區放大圖(網絡狀組織), 36 圖4 3 FSP-S材顆粒狀組織分布情形(白色虛線圍起處) 37 圖4 4 FSP材之微觀組織:(a) PD面全貌,(b) AS側TMAZ區(白色虛線處顆粒狀組織),(c)SZ區中央,(d) SZ區放大圖(網絡狀組織), 38 圖4 5 F材經FSP後之自然時效及安定化熱處理曲線 39 圖4 6 FSP材與FSP-S材之PD面微硬度分布 40 圖4 7 F材之XRD分析 41 圖4 8 FSP材之XRD分析 42 圖4 9 FSP-S材之XRD分析 43 圖4 10 粉末繞射圖:(a)鎂(JCPDS No.35-0821),(b)鋰(JCPDS No.89-3940) 44 圖4 11 LAZ921-F織構示意圖 45 圖4 12 FSP-S材平行TD方向拉伸試片各區域示意圖及斷裂位置 46 圖4 13 F、FSP材及FSP-S材之拉伸性質:(a)拉伸強度,(b)延伸率 47 圖4 14 F材、FSP材及FSP-S材之拉伸曲線 48 圖4 15 F材沖剪面之SEM觀察:(a)沖剪面整體形貌,(b)圖(a)虛線所圍起之裂紋 49 圖4 16 FSP-S材網絡狀組織沖剪面之SEM觀察:(a)沖剪面整體形貌,(b)較大倍率觀察 50 圖4 17 FSP-S材顆粒狀組織沖剪面之SEM觀察:(a)整體形貌,(b)較大倍率觀察 51 圖4 18 FSP材網絡狀組織沖剪面之SEM觀察:(a)整體形貌,(b)裂紋(虛線內) 52 圖4 19 FSP材顆粒狀組織沖剪面之SEM觀察:(a)整體形貌,(b)點狀缺陷(虛線內) 53 圖5 1 F-S材之XRD分析 64 圖5 2 F-S材之OM金相圖 65 圖5 3 F材拉伸破斷面之SEM照片:(a)整體形貌,(b)圖(a)中虛線處 66 圖5 4 FSP-S材拉伸破斷面之SEM照片:(a)整體形貌,(b)放大觀察 67 圖5 5 FSP材拉伸破斷面之SEM照片:(a)整體形貌,(b)放大觀察 68 圖5 6 F材於不同應變量下之OM觀察:(a)EL=0%,(b)EL=3%,(c)EL=6%,(d)EL=TE 69 圖5 7 FSP-S材於不同應變量下之OM觀察:(a)EL=0%,(b)EL=3%,(c)EL=6%,(d)EL=TE 70 圖5 8 FSP-S材試片拉伸至一定應變量不同組織之破壞情形:(a)大面積觀察,(b)網絡狀組織,(c)顆粒狀組織,(d)EL=6%時之顆粒狀組織 71 圖5 9 FSP材拉伸試片拉斷後之破壞情形:(a)網絡狀組織,(b)顆粒狀組織 72 圖5 10 F材沖剪次表面之OM照片:(a)裂紋分布,(b)較大的缺陷 73 圖5 11 FSP-S材沖剪次表面之OM照片:(a)顆粒狀組織,(b)網絡狀組織 74 圖5 12 FSP材沖剪次表面OM照片:(a)顆粒狀組織,(b)網絡狀組織 75 圖5 13 F材、F-320材及F-320-S材ED面之XRD分析 76

    [1] H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jaschik and V. Kaese, “Development, Processing and Applications Range of Magnesium Lithium Alloys”, Materials Science Forum, vol. 350-351, 2000, pp. 31-42.
    [2] C. W. Yang, T. S. Lui, L. H. Chen and H. E. Hung, “Tensile Mechanical Properties and Failure Behaviors with the Ductile-to-Brittle Transition of the α+β-Type Mg–Li–Al–Zn Alloy”, Scripta Materialia, vol. 61, 2009, pp. 1141-1144.
    [3] R. Mishra and Z. Ma, “Friction Stir Welding and Processing”, Materials Science and Engineering: R: Reports, vol. 50, 2005, pp. 1-78.
    [4] R. Ninomiya and K. Miyake, “A Study of Superlight and Superplastic of Mg-Li Based Alloy”, Journal of Japan Institue of Light Metals, vol. 51, 2001, pp. 509-513.
    [5] B. Massalski, H. Okamoto, P. R. subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM Internstional, 1990, pp. 314.
    [6] F. Hauser, P. Landon and J. Dorn, “Deformation and Fracture of Alpha Solid Solution of Lithium in Magnesium”, Transactions of American Society for Metals, vol. 50, 1958, pp. 856-883.
    [7] H. Y. Wu, Z. W. Gao, J. Y. Lin and C. H. Chiu, “Effects of Minor Scandium Addition on the Properties of Mg–Li–Al–Zn Alloy”, Journal of Alloys and Compounds, vol. 474, 2009, pp. 158-163.
    [8] G. Song and M. Kral, “Characterization of Cast Mg–Li–Ca Alloys”, Materials Characterization, vol. 54, 2005, pp. 279-286.
    [9] R. Wu and M. Zhang, “Microstructure, Mechanical Properties and Aging Behavior of Mg–5Li–3Al–2Zn–xAg”, Materials Science and Engineering: A, vol. 520, 2009, pp. 36-39.
    [10] R. Z. Wu, M. L. Zhang and T. Wang, “Microstructure Characterization and Mechanical Properties of Mg-9Li-5Al-1Zn-0.6RE Alloy”, Transactions of Nonferrous Metals Society of China, vol. 17, 2007, pp. 448-451.
    [11] N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota and K. Higashi, “The Aging Behavior and the Mechanical Properties of the Mg-Li-Al-Cu Alloy”, Scripta Materialia, vol. 36, 1997, pp. 551-555.
    [12] A. Alamo and A. D. Banchik, “Precipitation Phenomena in the Mg-31 At Percent Li-1 At Percent Al-Alloy”, Journal of Materials Science, vol. 15, 1980, pp. 222-229.
    [13] D. H. Kim, Y. S. Han, H. I. Lee and B. Cantor, “Structure and Decomposition Behavior of Mg-Li-Al Alloys”, Scripta Metallurgica Et Materialia, vol. 31, 1994, pp. 819-824.
    [14] A. Yamamoto, T. Ashida, Y. Kouta and K. B. Kim, “Precipitation in Mg-(4-13)%Li-(4-5)%Zn Ternary Alloys”, Materials Transactions, vol. 44, 2003, pp. 619-624.
    [15] T. C. Chang, J. Y. Wang, C. L. Chu and S. Lee, “Mechanical Properties and Microstructures of Various Mg–Li Alloys”, Materials Letters, vol. 60, 2006, pp. 3272-3276.
    [16] P. Villars, A. Prince and H. Okamoto, “Handbook of Ternary Alloy Phase Diagrams”, ASM International, 1995, pp. 3847-3864.
    [17] J. Y. Wang, W. P. Hong, P. C. Hsu, C. C. Hsu and S. Lee, “Microstructures and Mechanical Behavior of Processed Mg-Li-Zn Alloy”, Materials Science Forum, vol. 419-422, 2003, pp. 165-170.
    [18] 吳泓瑜、邱垂泓,「鎂鋰合金薄板的成形性研究」,工業材料雜誌253期,2008年。
    [19] C. C. Hsu, J. Y. Wang and S. Lee, “Room Temperature Aging Characteristic of MgLiAlZn Alloy”, Materials Transactions, vol. 49, 2008, pp. 2728-2731.
    [20] J. M. Song, Y. H. Lin, C. W. Su and J. Y. Wang, “Mechanical Responses of Superlight β-Based Mg-Li-Al-Zn Wrought Alloys under Resonance”, Metallurgical and Materials Transactions A, vol. 40, 2009, pp. 1026-1030.
    [21] T. H. Sanders and E. A. Starke, “Al-Li Alloys”, TMS-AIME, 1980, pp. 19-20.
    [22] 林逸華、宋振銘、王建義,「退火處理對輕量化Mg-Li 合金振動破壞性質影響探討」,台灣金屬熱處理學會年會論文,2007年。
    [23] H. Y. Wu, J. Y. Lin, Z. W. Gao and H. W. Chen, “Effects of Age Heat Treatment and Thermomechanical Processing on Microstructure and Mechanical Behavior of LAZ1010 Mg Alloy”, Materials Science and Engineering: A, vol. 523, 2009, pp. 7-12.
    [24] G. Song, M. Staiger and M. Kral, “Some New Characteristics of the Strengthening Phase in β-Phase Magnesium–Lithium Alloys Containing Aluminum and Beryllium”, Materials Science and Engineering A, vol. 371, 2004, pp. 371-376.
    [25] J. C. McDonald, “Age Hardening of Magnesium Alloy LA141A”, Transactions of American Society for Metals, vol. 61, 1968, pp. 505-518.
    [26] 成嘉偉、黃健嘉、李雄、王建義,「含鈧之LAZ1151及LAZ11101機械性質與微結構分析」,中國材料科學學會2010材料年會論文,2010年。
    [27] P. C. Wang, H. C. Lin, K. M. Lin, M. T. Yeh and C. Y. Lin, “A Study of Aging Treatment on the Mg-10Li-0.5Zn Alloy”, Materials Transactions, vol. 50, 2009, pp. 2259-2263.
    [28] 洪浩恩,「Mg-10Li-2Al-1Zn鎂合金擠型材於248K~523K之拉伸性質及延脆轉換特性探討」,國立成功大學材料科學及工程學研究所碩士論文,2009年,47-48頁。
    [29] K. Nakata, Y. G. Kim, H. Fujii, T. Tsumura and T. Komazaki, “Improvement of Mechanical Properties of Aluminum Die Casting Alloy by Multi-Pass Friction Stir Processing”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 437, 2006, pp. 274-280.
    [30] K. N. Krishnan, “On the Formation of Onion Rings in Friction Stir Welds”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 327, 2002, pp. 246-251.
    [31] C. J. Sterling, T. W. Nelson, C. D. Sorensen and M. Posada, “Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Fusion Welded 304L Stainless Steel”, Department of Mechanical Engineering, Brigham Young University, 2004.
    [32] C. G. Rhodes, M. W. Mahoney, W.H. Bingel, R. A. Spurling and C. C. Bampton, “Effects of Friction Stir Welding on Microstructure of 7075 Aluminum”, Scripta Materialia, vol. 36, pp. 69-75.
    [33] 林昇立,「塑性加工學」,新科技書局,1991年,249-261頁。
    [34] 歐陽渭城,「沖壓加工法」,全華科技圖書股份有限公司,2001年,9-15頁。
    [35] J. S. Leu, C. T. Chiang, S. Lee, Y. H. Chen and C. L. Chu, “Strengthening and Room Temperature Age-Softening of Super-Light Mg-Li Alloys”, Journal of Materials Engineering and Performance, 2010.
    [36] C. S. Barrett and T. B. Massalski, “Structure of Metals: Crystallographic Methods, Principles, and Data”, McGraw-Hill, 1966, pp. 202-205.
    [37] 王伯政、林泓霆、林新智、林昆明、葉明堂,「添加鋯對鎂鋰合金性質影響之研究」,社團法人台灣鎂合金協會九十七年度會員大會暨論文發表會論文集,2008年,43-47頁。
    [38] 林尚秋,「退火溫度對Mg-9wt.%Li-3wt.%Al-1wt.%Zn合金軋延板材微觀組織與機械性質之研究」,國立中興大學材料科學與工程研究所碩士論文,2008年。
    [39] N. N. Greenwood and A. Earmshaw, “Chemistry of the Elements ”, Butterworth-Heinemann, 1997, pp. 68-265.
    [40] D. W. Jr. and J. Burke, “The Metal Beryllium”, ASM, 1955, pp. 372-424.

    下載圖示 校內:2013-08-03公開
    校外:2013-08-03公開
    QR CODE