簡易檢索 / 詳目顯示

研究生: 廖啟仲
Liao, Chi-Chung
論文名稱: 應用於癲癇抑制之光電刺激系統與癲癇辨識演算法硬體設計
A Electrical and Optogenetic Stimulation System for Epileptic Depression and Epilepsy Identification Algorithm Hardware Design
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 生醫系統腦波量測訊號處理癲癇辨識癲癇抑制近似熵
外文關鍵詞: biomedical system, EEG measurement, signal processing, epilepsy identification and suppression, approximate entropy
相關次數: 點閱:315下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個基於腦波量測的癲癇偵測與抑制之光電刺激系統及癲癇辨識演算法的硬體設計。腦電圖(Electroencephalography, EEG)是於臨床中時常被用來檢測腦部疾病,例如癲癇。透過腦電圖的量測,可以得知腦部的狀態,並配合即時辨識演算法,辨識出癲癇是否發作,若偵測到癲癇發作,隨即施以深腦部刺激(deep brain stimulation)與光基因刺激(optogenetic stimulation)進行抑制,達到緩解癲癇疾病的效果。
    本論文提出的腦波量測與光電刺激系統包含了四個部分:前端類比腦波量測電路、電刺激電路、光刺激電路以及藍芽無線傳輸韌體。可將接收到的腦波即時傳送至電腦端,配合自行開發的圖形化使用者介面(Graphical User Interface, GUI)進行辨識,且透過無線控制刺激模組,適時給予光電刺激。並將此系統透過國立成功大學醫學院進行動物實驗,已證明可達到癲癇抑制的效果。
    本論文的辨識演算法流程為腦波訊號採集、腦波訊號預處理、特徵萃取(Feature extraction)、類神經網路(Neural network)分類器,先將收集到的腦波進行濾波後,經由特徵萃取給予分類器特徵值進行分類,最終輸出辨識結果。訊號取樣頻率為400Hz,演算法採用每64點(約0.16秒)進行辨識。特徵萃取採用頻域、振幅、變異數以及近似熵(Approximate Entropy, ApEn)作為特徵。由於每個個體間的腦波略有差異,因此採用具學習能力的類神經網路架構進行分類,可使演算法更適用於不同個體的腦波上,以提升精準度。
    本論文將演算法於硬體與軟體上分別實現,在軟體的準確率可達98.76%,硬體準確率為89.88%,因此證實提出的架構確實能透過腦波量測進行癲癇的即時辨識。
    結合腦波量測、無線傳輸、癲癇辨識演算法以及刺激功能,相較於以往癲癇病患須靠長期服藥或是手術進行治療,此系統能使癲癇患者於癲癇發作的第一時間進行抑制,可避免許多意外的傷害。

    This paper proposes a system design based on brain waveform measurement for the detection and suppression of epilepsy and the hardware design of the epileptic recognition algorithm. Electroencephalography (EEG) is often used in the clinic to detect brain diseases such as epilepsy. According to the real-time EEG measurement, the identification algorithm can be used to identify whether seizures attack or not. If seizures are detected, the deep brain stimulation or optical stimulation is used to inhibit the epilepsy.
    The EEG measurement and stimulation system proposed in this paper contains four parts: an analog front end, an electrical stimulation circuit, an optical stimulation circuit and a Bluetooth wireless transmission firmware. The system can transmit the EEG signal in real time to the computer and identify it with an epilepsy identification algorithm in graphical user interface and control the stimulation module wirelessly to give stimulation immediately. This system has successfully inhibited epilepsy in animal experiments with mice.
    The identification algorithm flow of this thesis includes the signal acquisition, the signal pre-processing, the feature extraction and the neural network classifier. The signal with sample rate of 400Hz is filtered by pre-processing processor. The algorithm will output the identification result every 64 points. Then, feature extraction will output 6 features including the information of frequency domain, amplitude of time domain, variance and approximate entropy. Because there are slight differences of EEG between individuals, the classification using a neural network architecture with learning ability can make the algorithm more suitable for biology to improve accuracy.
    In this paper, the algorithm is implemented on hardware and software respectively. The accuracy of the proposed system are about 98.76% and 89.88% by the verification on the software and hardware implementation, respectively. It reveals the proposed architecture is effective for epilepsy recognition. Combined with EEG measurement, wireless transmission, epilepsy recognition algorithm and stimulation system, this system can prevent epilepsy patients from suppressing seizures at the early time.

    摘要 II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 論文架構 2 第二章 癲癇介紹 3 2.1 癲癇介紹 3 2.2 癲癇治療 4 2.2.1 深腦電刺激 5 2.2.2 光基因技術與刺激 6 2.3 動物實驗 8 2.3.1 光基因轉殖鼠 8 2.3.2 電極植入手術 8 2.3.3 腦波量測與光電刺激實驗 12 第三章 系統架構實現 14 3.1 腦波量測與刺激電路 15 3.1.1 類比前端電路 15 3.1.2 數位濾波器 16 3.1.3 無線傳輸 17 3.1.4 電刺激電路 17 3.1.5 光刺激電路 18 3.2 藍芽傳輸 19 3.2.1 雙通道腦波量測 20 3.2.2 電刺激控制 20 3.2.3 光刺激控制 24 3.2.4 指令集 25 3.3 圖形化使用者介面 28 3.4 癲癇辨識演算法 30 3.4.1 特徵萃取 32 3.4.1.1 近似熵 32 3.4.1.2 時域分析 37 3.4.1.3 頻域分析 39 3.4.2 類神經網路 40 第四章 演算法硬體架構 44 4.1 特徵萃取 44 4.1.1 離散傅立葉轉換(DFT) 44 4.1.2 近似熵 45 4.1.3 時域分析 47 4.2 類神經網路 47 第五章 電路實現與量測 50 5.1 腦波量測與刺激系統電路板量測 50 5.1.1 電刺激 51 5.1.2 光刺激 53 5.2 動物實驗 55 5.2.1 電刺激抑制結果 55 5.2.2 光刺激抑制結果 55 5.3 數位電路設計流程 56 5.4 硬體量測 57 5.4.1 特徵萃取量測結果 58 5.4.2 類神經網路量測結果 58 5.4.3 癲癇辨識演算法量測結果 59 5.5 硬體規格表 61 5.6 癲癇辨識準確率 62 5.6.1 軟體辨識準確率 62 5.6.2 硬體辨識準確率 65 第六章 結論與未來展望 68 6.1 腦波量測討論 70 6.2 光電刺激討論 70 6.3 癲癇辨識演算法討論 71 6.4 未來臨床發展 72 參考文獻 73 口試委員意見回覆 77 附件一、動物實驗計畫書 79 附件二、動物變更申請書 80

    [1] https://www.cdc.gov/epilepsy/data/index.html
    [2] Epilepsy. Fact Sheets. World Health Organization. October 2012 [January 24, 2013]. http://www.who.int/en/news-room/fact-sheets/detail/epilepsy
    [3] Ropper. A., et al., Adams and Victor's Principles of Neurology. 8th ed. 2005: McGraw Hill. 271.
    [4] 陳倩, 臺北榮民總醫院神經內科癲癇科主治醫師, "抗癲癇藥物治療" http://vghtpe2015.hihost.com.tw/infors_view.php?minfoid=45&lmenuid=6&smenuid=16&pm=B04
    [5] Berg AT, Berkovic SF, Brodie MJ, et al. (2010) Revised terminology and concepts for organization of seizures and epilepsies: Report of theILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010; 51:676–685.
    [6] Mac TL, Tran DS, Quet F, Odermatt P, Preux PPM, Tan CT. Epidemiology, aetiology, and clinical management of epilepsy in Asia: a systematic review. Lancet Neurol 2007; 6: 533-43.
    [7] D. J. Thurman et al., “Standards for epidemiologic studies and surveillance of epilepsy,” Epilepsia, vol. 52, pp. 2–26, 2011.
    [8] Nadkarni, S., J. L., et al., Current treatments of epilepsy. Neurology, 2005. 64(12 Suppl 3): p. S2-11.
    [9] 顏俊博、關皚麗, “頑固型癲癇的手術治療” , 高醫醫訊月刊第二十一卷第四期
    http://www.kmuh.org.tw/www/kmcj/data/9009/4791.htm
    [10] J. Zabara, “Inhibition of experimental seizures in canines by repetitive vagal stimulation,” Epilepsia, vol. 33, pp. 1005–1012, 1992.
    [11] C. N. Heck, D. King-Stephens, A. D. Massey, D. R. Nair, B. C. Jobst, G. L. Barkley, V. Salanova, A. J. Cole, M. C. Smith, and R. P. Gwinn et al., “Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: Final results of the rns system pivotal trial,” Epilepsia, vol. 55, no. 3, pp. 432–441, 2014.
    [12] A. L. Jensen and D. M. Durand. “High frequency stimulation can block axonal conduction,” Experimental neurology, vol. 220, no. 1, pp. 57-70, 2009.
    [13] Y. Schiller and Y. Bankirer. “Cellular mechanisms underlying antiepileptic effects of low-and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro,” Journal of neurophysiology, vol. 97, no. 3, pp. 1887-1902, March 2007.
    [14] E. B. Dalkilic, “Neurostimulation Devices Used in Treatment of Epilepsy,” Current Treatment Options in Neurology, vol. 19, no. 2, pp. 7, 2017.
    [15] R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry, R. Gross, K. Oommen, and I. Osorio et al., “Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy,” Epilepsia, vol. 51, no. 5, pp. 899–908, 2010.
    [16] Salanova V, Witt T, Worth R, Henry TR, Gross RE, Nazzaro JM, Labar D, Sperling MR, Sharan A, Sandok E, Handforth A, Stern JM, Chung S, Henderson JM, French J, Baltuch G, Rosenfeld WE, Garcia P, Barbaro NM, Fountain NB, Elias WJ, Goodman RR, Pollard JR, Tröster AI, Irwin CP, Lambrecht K, Graves N, Fisher R, SANTE Study Group. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015; 84(10):1017-1025.
    [17] http://www.ncku.edu.tw/animal/ch/news.html
    [18] D. R. Merrill, M. Bikson, and J. G. R. Jefferys, “Electrical stimulation of excitable tissue: Design of efficacious and safe protocols,” J. Neurosci. Methods, vol. 141, pp. 171–198, 2005.
    [19] T. M. Bruns, N. Bhadra, and K. J. Gustafson, “Variable patterned pudendal nerve stimuli improves reflex bladder activation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 2, pp. 140–148, Apr. 2008.
    [20] G. Tobin, "Presynaptic muscarinic receptor mechanisms and submandibular responses to stimulation of the parasympathetic innervation in bursts in rats," Auton Neurosci, vol. 99, no. 2, pp. 111-118, Aug. 2002.
    [21] F. J. Rodriguez, D. Ceballos, M. Schuttler, A. Valero, E. Valderrama, T. Stieglitz, and X. Navarro, “Polyimide cuff electrodes for peripheral nerve stimulation,” J. Neurosci. Methods, vol. 98, pp. 105–118, 2000.
    [22] Max5550 Data Sheet [Online].
    Available: https://datasheets.maximintegrated.com/en/ds/MAX5550.pdf
    [23] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, "A regularity statistic for medical data analysis, " J. Clin. Monitor., vol. 7, no. 4, pp. 335-345, 1991.
    [24] S. M. Pincus, “Approximate entropy as a measure of system complexity.” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991.
    [25] R. A. McKinley, L. K. McIntire, R. Schmidt, D. W. Repperger, and J. A. Caldwell, ‘‘Evaluation of eye metrics as a detector of fatigue,’’ Human Factors, vol. 53, no. 4, pp. 403–414, 2011.
    [26] B. Hong, F. Yang, Q. Tang, and T.-C. Chan, “Approximate entropy and its preliminary application in the field of EEG and Cognition,” in Proc. 20th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Hong Kong, Oct.–Nov. 29–1, 1998, pp. 2091–2094.
    [27] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine calculation of complex Fourier series,’’ Math. Comput., vol. 19, no. 90, pp. 297–301, 1965.
    [28] C. van Loan, Computational Frameworks for the Fast Fourier Transform. Philadelphia, PA: SIAM, 1992.
    [29] PM20CH [Online.]
    https://www.thorlabs.com/thorproduct.cfm?partnumber=PM20CH
    [30] Metal Can® TO38, PL 450B Data Sheet [Online].
    Available: https://dammedia.osram.info/media/resource/hires/osram-dam-6557694/PL%20450B_EN.pdf
    [31] G. Gagnon-Turcotte et al., ”A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 1, pp. 1-14, 2017.
    [32] A. Mesri, M. Sampietro, A. B. Cunha, G. Ferrari and Ø. G. Martinsen, "A Laser Diode-Based Wireless Optogenetic Headstage," 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, 2018, pp. 257-260.
    [33] W. M. Chen, et al., “A Fully Integrated 8-Channel Closed-Loop NeuralProsthetic CMOS SoC for Real-Time Epileptic Seizure Control,” IEEE JSSC, vol. 49, no. 1, pp. 232–247, Jan. 2014.
    [34] H. Kassiri, et al., "All-wireless 64-channel 0.013mm2/ch closed-loop neurostimulator with rail-to-rail DC offset removal," ISSCC Digest Tech. Papers, pp. 452–453, Feb. 2017.
    [35] 林秉弘, 應用樣本熵與光基因刺激發展即時控制系統抑制光基因轉殖小鼠之癲癇活動, 國立成功大學機械工程學系碩士論文, 2016.

    無法下載圖示 校內:2023-11-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE