簡易檢索 / 詳目顯示

研究生: 劉家綺
Liu, Chia-Chi
論文名稱: 基於DPCM與適應性量化的無失真/近無失真壓縮演算法
A Lossless/Near-lossless Compression Algorithm Based on DPCM and Adaptive Quantization
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 50
中文關鍵詞: 無失真近無失真壓縮影像
外文關鍵詞: near-lossless, image, compression, lossless
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文所提出的演算法是對影像做無失真和近無失真的壓縮,在無失真壓縮部分,是以DPCM為基礎及提出的無失真壓縮演算法為核心。而近無失真壓縮的部分,則是依循無失真壓縮的作法再加上適應性量化來達到目標。提出的無失真演算法是針對影像中邊(edge)的特性分成5種模式來做預測,其中包含規律模式(regular mode)、水平邊緣模式(horizontal edge mode)、垂直邊緣模式(horizontal edge mode)、對角邊緣模式(diagonal edge mode)和無邊緣模式(non-edge mode)。模式的預測是利用相鄰像素的特性來判斷。此外,在適應性量化的設計上是考慮人眼對平滑區域的失真比複雜區域的失真敏感,所以針對這點,在量化部分使用了3個量化步階(Quantization step size)。實驗結果顯示,在無失真壓縮部分,雖然壓縮比並不如JPEG-LS,但計算複雜度和空間複雜度上皆比JPEG-LS低,且在近無失真壓縮部分,在視覺效果上亦比JPEG-LS的近無失真結果佳。

      This thesis is aim at lossless and near lossless image compression. The lossless compression part is based on DPCM, and it is the core of the near-lossless part. In the near lossless part, the adaptive quantization is used. The proposed lossless algorithm is designed in five modes which are the regular mode, the horizontal edge mode, the vertical edge mode, the diagonal edge mode and the non-edge mode. The mode decision is also needed to decide which mode is given by observing the behavior of the pixels around the predictive pixel. In terms of HVS, human eyes are more sensitive to smooth regions, that is, serious distortions existing in smooth regions is easier to see. Owing to this reason, in quantization part, three quantization step sizes are designed. Experimental results show that, in lossless part, although the compression ratio of the proposed algorithm is not as good as JPEG-LS, but the computational complexity is decreased by discarding the context modeling. In near-lossless part, the perceptual quality of the reconstructed images is also better than JPEG-LS.

    LIST OF TABLES i LIST OF FIGURES ii CHAPTER 1 Introduction 1 CHAPTER 2 Introduction to JPEG-LS 3 2.1 Modeling and Prediction 4 2.2 Context Modeling 5 2.2.1 Parameterization 5 2.2.2 Error residual alphabet in JPEG-LS 7 2.2.3 Context determination 7 2.3 Adaptive correction 8 2.4 Coding 10 2.5 Embedded Alphabet Extension: Run Mode 11 2.6 Embedded Alphabet Extension: Run Mode 12 CHAPTER 3 The Proposed Lossless and Near-Lossless Algorithm 14 3.1 overview of the Proposed Algorithm 14 3.2 The Proposed Lossless Algorithm 16 3.2.1 The Estimation of the Direction of the Pixel 16 3.2.2 The Regular Mode 17 3.2.3 The Horizontal Edge Mode 18 3.2.4 The Vertical Edge Mode 19 3.2.5 The Diagonal Edge Mode 20 3.2.6 The Non-Edge Mode 23 3.3 The Entropy Coding 23 3.4 Summary of encoding procedures 25 3.5 Near-lossless compression 26 3.5.1 Prediction and Quantization 26 3.5.2 Entropy Coding in Near-Lossless Compression Coding 30 3.5.2.1 Golomb-Rice Code in Near-Lossless Coding 31 3.5.2.2 Huffman Code in Near-Lossless Coding 32 CHAPTER 4 Experimental Results 34 4.1 Assessment 34 4.2 Experimental Results of Lossless algorithm 34 4.3 Experimental Results of Near-Lossless algorithm 36 CHAPTER 5 Conclusions and Future Works 47 REFERENCE 48 BIOGRAPHY 50

    [1] A. Netravali and J. O. Limb, “Picture coding: A review,” Proc. IEEE, vol. 68, pp. 366–406, 1980.
    [2] C. Grecos, J. Jiang, E.A. Edirisinghe, “Two low cost algorithms for improved diagonal edge detection in JPEG-LS”, IEEE Transactions on, Consumer Electronics, Vol. 47, pp. 466 – 473, Aug. 2001
    [3] G. G. Langdon, Jr. and M. Manohar, “Centering of context-dependent components of
    prediction error distributions,” in Proc. SPIE (Applications of Digital Image Processing XVI), vol. 2028, pp. 26–31, 1993.
    [4] G. S. Marcelo, J.Weinberger, and G. Sapiro, “The loco-i lossless image compression algorithm: Principles and standardization into jpeg-ls,” IEEE Trans. Image Processing, vol. 9, pp. 1309–1324, Aug. 2000.
    [5] J. Sayre et al., “Effect of data compression on diagnostic accuracy in digital hand and chest radiography,” in Proc. SPIE Conf. Medical Imaging VI: Image Capture, Formatting, and Display, Feb. 1992, vol. 1653, pp. 232–240.
    [6] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low complexity, context-based, lossless image compression algorithm,” in Proc. 1996 Data Compression Conference, Snowbird, UT, Mar. 1996, pp. 140–149.
    [7] M. J. Weinberger, J. Rissanen, and R. Arps, “Applications of universal context modeling to lossless compression of gray-scale images,” IEEE Trans. Image Processing, vol. 5, pp. 575–586, Apr. 1996.
    [8] M. J.Weinberger and G. Seroussi, “Sequential prediction and ranking in universal context modeling and data compression,” IEEE Trans. Inform. Theory, vol. 43, pp. 1697–1706, Sept. 1997.
    [9] N. Merhav, G. Seroussi, and M. J.Weinberger, “Coding of sources with two-sided geometric distributions and unknown parameters,” 1999. To appear in IEEE Trans. Inform. Theory. Available as part of Technical Report No. HPL-98-70, Apr. 1998, Hewlett-Packard Laboratories.
    [10] N. Merhav, G. Seroussi, and M. J.Weinberger, “Modeling and low-complexity adaptive coding for image prediction residuals,” in Proc. of the 1996 Int’l Conference on Image Processing, vol. II, (Lausanne, Switzerland), pp. 353–356, Sept. 1996.
    [11] N. Merhav, G. Seroussi, and M. J. Weinberger, “Optimal prefix codes for sources with two-sided geometric distributions,” 1999. To appear in IEEE Trans. Inform. Theory. Available as part of Technical Report No. HPL-98-70, Apr. 1998, Hewlett-Packard Laboratories.
    [12] P. C. Cosman et al.,“Thoracic CT images: Effect of lossy image compression on diagnostic accuracy,” Radiology, vol. 190, pp. 517–524, Feb. 1994.
    [13] P. C. Cosman, R. M. Gray, and R. A. Olshen, “Evaluating quality of compressed medical images: SNR, subjective rating, and d iagnostic accuracy,” Proc. IEEE, vol. 82, pp. 919–932, June 1994.
    [14] R. Gallager and D. V. Voorhis, “Optimal source codes for geometrically distributed integer alphabets,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 228–230, Mar. 1975.
    [15] R. F. Rice, “Some practical universal noiseless coding techniques—Parts I–III,” Tech. Rep. JPL-79-22, Jet Propul. Lab., Pasadena, CA, Mar. 1979.
    [16] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. IT-12, pp. 399–401, 1966.
    [17] X. Wu and N. D. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans. Commun., vol. 45 (4), pp. 437–444, Apr. 1997.

    下載圖示 校內:2005-07-09公開
    校外:2005-07-09公開
    QR CODE