簡易檢索 / 詳目顯示

研究生: 許毅晟
Hsu, Yi-Cheng
論文名稱: 電解槽速度與電流密度均勻性之分析
Velocity and Current Density Uniformity Analysis of Electrolytic Cells
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 速度均勻性兩相流多流道電解氣泡電流密度
外文關鍵詞: Velocity Uniformity, Two Phases Flow, Multi-Channel, Electrolysis, Bubble, Current Density
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於尼龍66(Nylon 66)的各項優點,目前民生與工業對於尼龍66的需求量大,而製備尼龍66所需之化合物為己二胺,大部分由製作己二胺的原料之一──己二腈所製備而成。己二腈有許多方式可以合成,其中一個主流方法是使用丙烯腈電解製備己二腈。目前丙烯腈電解製備己二腈之電解反應器是使用單ㄧ流道或串聯電解槽,為使己二腈大量生產,提升電解效率即扮演重要角色。將電解槽由單ㄧ流道擴充至多流道並聯設計為本文所討論的方法,但多流道並聯設計會使各流道速度分布不均勻,且流道內流體速度對己二腈之電解效率和選擇性皆有一定的影響。除此之外,在電解反應時陽極會產生氧氣,氧氣累積會使電解效率下降。所以能否將流道流體速度控制於一定範圍,並有效的排出氧氣,決定能否有效地維持或提高反應效率。因此,本文透過模擬探討電解槽多流道並聯模型之流場,將得到的速度均勻性進行對比,改善因流速不均勻所導致許多副產物增加的現象以及提升電解效率。
    本文首先分析單流道電解槽於不同進口速度(1.0 m/s、1.5 m/s)時的各項差異。電解過程中陽極產物為氧氣,由於氣體電導率較低,氣體生成將造成流體電導率與電流密度下降,使電解槽內電解效率下降、己二腈產量下降。本文之物理模型為有效電解長度1000 mm與陰陽極間隙2.4 mm之流道,並以二維尤拉-尤拉兩相流模型(Euler-Euler two-phase flow model)模擬壁面生成氣泡流,並分析電導率與電流密度因氣泡產生、累積而下降之影響。結果顯示當流速為1.0 m/s時,有效電解區末端之電流密度由6000 A/m2下降至4354.8 A/m2(下降27.42%);流速為1.5 m /s時,電流密度下降至4770.5 A/m2(下降約20.49%)。結果呈現電解液流速增加而使電流密度下降量減少的趨勢。氧氣壁面局部質通量(Local oxygen mass flux)與氧氣總累積質量流率(Total oxygen accumulated mass flux rate)也隨著流速增加而增加。
    因本研究為多流道電解槽分析,在單流道分析得知速度與電流密度之關係後便探討二維多流道電解槽。多流道電解槽總共有8個流道,電解液由入口歧管流入寬度2.4 mm之流道,流道有效電解長度為1000 mm。此部分探討在不同進口流量、不同流向(平行流、逆向流)與不同初始電流密度(4000 A/m2、6000 A/m2、8000 A/m2)對速度均勻性、體積分率與電流密度之影響,且因電流密度變化造成產氧量改變。結果顯示在流量較少的Case1與流量較多的Case2,速度均勻性各為89.57%、86.72%。逆向流時,速度均勻性為94.68%、93.22%。由此可知在流量越多時速度均勻性越低且平行流之均勻性較同速度之逆向流差。除此之外,電流密度下降百分比會隨著初始電流密度越高而越大。各流道壓降也會因為進口流量越多而越大。

    Due to advantages of Nylon-66, demand of Nylon-66 increases for industry. One of elements which used to synthesize Nylon-66 is Hexamethylenediamine, which can be synthesized by Hexanedinitrile. There are some methods to get Hexanedinitrile. This dissertation use Acrylonitrile to synthesis Hexanedinitrile because this method is less pollution and less energy consumption. There are two types of arrangement for multi-electrolytic-cell to increase production of Hexanedinitrile, one is parallel arrangement, the other one is serial arrangement. This dissertation focuses on parallel arrangement to produce. However, parallel arrangement design has uniformity problem, which means there are different velocities in each channel. Furthermore, selectivity is necessary to considered in this chemical reaction. Velocity is one of element which influences selectivity of Hexanedinitrile. Moreover, there is oxygen generated on anode side. Electrical conductivity of gas is very low so gas accumulation will reduce efficiency of the electrolysis reaction. In order to keep the reaction process controllable, it is important to know how to keep velocity uniformity high and remove oxygen from channels effectively.
    To increase reaction effectivity, this dissertation uses different inlet velocity (1.0 m/s, 1.5 m/s) and voltages to simulate, then discusses how current density, velocity, volume fraction, pressure drop distributed in the cells and compares velocity uniformity. This paper use physical model which is 1000 mm long, 2.4 mm between anode and cathode to simulate electrolyte flowing through parallel arranged electrolytic cells with Euler-Euler two-phase flow model. Results show that there is lower volume fraction and lower current density drop in higher flow rate. For example, current density drops from 6000 A/m2 to 4354.8 A/m2(27.42%) when velocity is 1.0 m/s, from 6000 A/m2 to 4770.5 A/m2(20.49%) when velocity is 1.5 m/s. Additionally, Local oxygen mass flux and Total oxygen accumulated mass flux become bigger with increasing velocity.
    In multi-channel simulation, velocity uniformity is lower in higher flow rate, for example, in parallel flow, velocity uniformity of Case1 (lower flow rate) is 89.57%. In Case2 (higher flow rate), velocity uniformity is 86.72%. Besides, velocity uniformity of reversed flow is higher than parallel flow.

    摘要 I Abstract III 誌謝 IX 目錄 X 圖目錄 XI 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 8 第二章 理論模式 13 2.1 物理模型 13 2.2 統御方程式 19 2.3 邊界條件 24 第三章 數值分析 27 3.1 數值方法 27 3.1.1 UDF耦合計算方法 27 3.2 收斂條件 28 3.3 網格測試 29 第四章 結果與討論 34 第五章 結論 61 參考文獻 63 附錄A電解氣泡模擬之UDF程式(6000A/m2) 67

    1. 曾嘉雄, 沈育如, 蔡平賜, “高溫尼龍研究發展”, 台灣化學工程學會, 第6卷第2期, 2017.
    2. Karimi, F., Mohammadi, F., & Ashrafizadeh, S. N. “An experimental study of the competing cathodic reactions in electrohydrodimerization of acrylonitrile”, Journal of The Electrochemical Society, Vol.158(12), E129, 2011.
    3. Antal, S. P., Lahey Jr, R. T., & Flaherty, J. E. “Analysis of phase distribution in fully developed laminar bubbly two-phase flow”, International journal of multiphase flow, Vol.17(5), pp.635-652, 1991.
    4. Stewart, C. W. “Bubble interaction in low-viscosity liquids”, International journal of multiphase flow Vol.21.6, pp.1037-1046, 1995.
    5. Sokolichin, A., Eigenberger, G., Lapin, A., & Lübert, A. “Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange”, Chemical engineering science, Vol.52(4), pp.611-626, 1997.
    6. Sokolichin, A., & Eigenberger, G. “Applicability of the standard k–ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations.”, Chemical Engineering Science, Vol.54(13-14), pp.2273-2284, 1999.
    7. Krishna, R., & Van Baten J. M. “Rise Characteristics of Gas Bubbles in a 2D Rectangular column: VOF simulation vs experiments”, International Communications in Heat Mass Transfer, Vol.26, No.7, pp.965-970, 1999.
    8. Nagai, N., Takeuchi, M., & Nakao, M. “Influences of bubbles between electrodes onto efficiency of alkaline water electrolysis” In Proceedings of 4th Pacific Symposium on Flow Visualization and Image, 2003.
    9. Yang, H., Zhao, T. S., & Ye, Q. “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells”, Journal of Power Sources, Vol.142(1-2), pp.117-124, 2005
    10. Wu, R. Z., Shu, D., Sun, B. D.,Wang, J., & Lu, Y. L. “Observation and theoretic analysis of gas-bubble formation and growth in water-model”, Transactions of Nonferrous Metals Society of China, Vol.15, No.5, pp.1130-1131, 2005.
    11. Aldas, K., Pehlivanoglu, N., & Mat, M.D. “Numerical and experimental investigation of two-phase flow in an electrochemical cell”, International Journal of Hydrogen Energy, Vol.33, pp.3668-3675, 2008.
    12. Zhang, L., Yang, C., & Mao, Z. S. “Numerical simulation of a bubble rising in shear-thinning fluids”, Journal of NonNewtonian Fluid Mechanics, Vol.165, No.11/12, pp.555-561, 2010.
    13. Ali, B. A., & Pushpavanam, S. “Analysis of unsteady gas–liquid flows in a rectangular tank: Comparison of Euler–Eulerian and Euler–Lagrangian simulations”, International Journal of Multiphase Flow, Vol.37, pp.268-277, 2011.
    14. Alexiadis, A., Dudukovic, M. P., Ramachandran, P., Cornell, A., Wanngård, J., & Bokkers, A. “Liquid–gas flow patterns in a narrow electrochemical channel”, Chemical Engineering Science, Vol.66(10), pp.2252-2260, 2011.
    15. Razlan, Z. B. M., Goshima, H., Hirota, M., Isobe, R., Mizuno, Y., Maruyama, N., & Nishimura, A. "Gas-Liquid Flow Distributions in Multipass Channels with Vertical Upward Branches" The Open Transport Phenomena Journal 3.1, 2011.
    16. Vera, E. A., & Ruiz, J. R. “Comparison Between Turbulent and Laminar Bubbly-Flow for Modeling H2/H2O Separation”, In COMSOL Conference, Milan, 2012.
    17. Silva, M. K., d’Ávila, M. A., & Mori, M. “Study of the interfacial forces and turbulence models in a bubble column”, Computers & Chemical Engineering, Vol.44, pp.34-44, 2012.
    18. Pourtousi, M., Sahu, J. N., & Ganesan, P. “Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column”, Chemical Engineering and Processing: Process Intensification, Vol.75, pp.38-47, 2014.
    19. Liu, C. L., Sun, Z., Lu, G. M., Song, X. F., & Yu, J. G. “Experimental and numerical investigation of two‐phase flow patterns in magnesium electrolysis cell with non‐uniform current density distribution”, The Canadian Journal of Chemical Engineering, Vol.93(3), pp.565-579, 2015.
    20. 江炫儒, “電解反應器進出口歧管與流道設計”, 成功大學機械工程學系學位論文, pp.1-112, 2018.
    21. Chang, J. Y., Gan, Y. F. “Numerical Simulation of a Two-Phase Flow for the Acrylonitrile Electrolytic Adiponitrile Process in a Vertical/Horizontal Electrolysis Cell”, Energies, Vol.11, No.10, 2018.
    22. Davis, J. T., Brown, D. E., Pang, X., & Esposito, D. V. “High Speed Video Investigation of Bubble Dynamics and Current Density Distributions in Membraneless Electrolyzers”, Journal of The Electrochemical Society, Vol.166(4), F312, 2019.
    23. Bassiouny, M. K. , & Martin, H. “Flow Distribution and Pressure Drop in Plate Heat Exchangers-I:U-Type Arrangement”, Chemical Engineering Science, Vol. 39, No. 4, pp.693-700, 1984.
    24. Bassiouny, M. K. ,& Martin, H. “Flow Distribution and Pressure Drop in Plate Heat Exchangers-II:Z-Type Arrangement”, Chemical Engineering Science, Vol. 39, No. 4, pp.701-704, 1984.
    25. Ahn, H., Lee, S. , & Shin, S. “Flow Distribution in Manifolds for Low Reynolds Number Flow”, KSME International Journal, Vol. 12, No. 1, pp.87-95, 1998.
    26. 王啟川,熱交換設計,chapter13,三民書局,台北,台灣,2007。
    27. Hassan, J. M. , Mohammed, W. S., Mohamed, T. A., & Alawee, W.H. “Review on Single-Phase Fluid Flow Distribution in Manifold”, International Journal of Science and Research, Vol. 3, pp. 325-330, 2014.
    28. Bruggemann, D.A.G, “Modelling of gas-evolving electrolysis cells. III. The iR drop at gas-evolving electrodes”, J. Appl. Electrochem, Vol.19, pp.720-728, 1989.
    29. Rampure, M. R., Buwa, V. V., & Ranade, V. V., “Modelling of gas‐liquid/gas‐liquid‐solid flows in bubble columns: experiments and CFD simulations”, The Canadian Journal of Chemical Engineering, Vol.81(3‐4), pp.692-706, 2003.
    30. Díaz, M. E., Iranzo, A., Cuadra, D., Barbero, R., Montes, F. J., & Galán, M. A., “Numerical simulation of the gas–liquid flow in a laboratory scale bubble column: influence of bubble size distribution and non-drag forces”, Chemical Engineering Journal, Vol.139(2), pp.363-379, 2008.
    31. Morsi, S. A. J., & Alexander, A. J., “An investigation of particle trajectories in two-phase flow systems. Journal of Fluid mechanics”, Vol.55(2), pp.193-208, 1972.
    32. Tomiyama, A., “Struggle with computational bubble dynamics”, Third International Conference on Multiphase Flow, Lyon, France, pp.8-12, 1998.
    33. Lopez de Bertodano, M., “Turbulent Bubbly Flow in a Triangular Duct”, Ph.D. Thesis. Rensselaer Polytechnic Institute, Troy, New York, 1991.
    34. Burns, A. D., Frank, T., Hamill, I., & Shi, J. M., “The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In 5th International Conference on Multiphase Flow, ICMF, Vol.4, pp.1-17, 2004.
    35. Launder, B. E., & Spalding, D. B., “Mathematical models of turbulence”, Academic Press, London, 1972.
    36. “ANSYS FLUENT User’s Guide. Release 15.0”, ANSYS Inc., USA, 2013.
    37. “ANSYS Fluent Theory Guide. 15.0”, ANSYS Inc., USA, 2013.

    無法下載圖示 校內:2023-01-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE