簡易檢索 / 詳目顯示

研究生: 路翔鈞
Lu, Hsiang-Chun
論文名稱: 應用風力發電機模擬器於風能轉換系統之研製
Development of Wind Energy Conversion System Using Wind Turbine Simulator
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 96
中文關鍵詞: 風能轉換系統風力發電機模擬器電能轉換系統
外文關鍵詞: power converter system, wind energy conversion system, wind turbine simulator
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究旨在建置風力發電機模擬器及小型風能轉換系統之研製。一般在風能轉換系統之研究中,通常需藉由現地試驗或風洞試驗的輔助來完成其研發及測試,然而這將增加所需花費之時間及成本。因此,本文首先提出一風力發電機模擬系統來模擬實際風力發電機之特性,接者應用此風力發電機模擬系統來進行電能轉換系統之研製,最後結合風力發電機模擬系統及電能轉換系統建立一套風能轉換系統雛型。由實驗結果證實,本文提出之風能轉換系統可操作於獨立供電模式或市電併聯模式,並在變動之風速狀況下,可供應定功率輸出或最大功率輸出。

    This thesis presents the development of wind energy conversion system (WECS) using a wind turbine simulator. Generally, wind tunnel test is essential in the evaluation of the WECS. However, such a field test inevitably increase time and cost in the developmental process. Therefore, the proposed wind turbine simulator system is constructed to emulate the actual wind turbine characteristics. Following that, a laboratory prototype of the small scaled WECS is built. Experimental results confirm that the proposed WECS can be operated in the stand-alone loading mode or grid-connected mode at constant power output or maximum power output under the various wind speed conditions.

    Chinese Abstract I English Abstract II Acknowledgements IV Contents V List of Figures IX List of Tables XV Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Goals and Contributions 3 1.3 Thesis Organization 4 Chapter 2 Development of Wind Turbine Simulator System for Wind Energy Conversion System 5 2.1 Introduction 5 2.2 Wind Turbine Simulator 5 2.3 Characteristic of Wind Turbine System 10 2.3.1 Power Flow 10 2.3.2 Maximum Power Point 12 2.4 Implementation of Wind Turbine Simulator System 16 2.4.1 Hardware of Wind Turbine Simulator System 16 2.4.2 Software of Wind Turbine Simulator System 18 2.5 Experimental Results 20 2.6 Summary 26 Chapter 3 Analysis and Control of Power Converter System for Wind Energy Conversion System 27 3.1 Introduction 27 3.2 Configuration of the Power Converter system for Wind Energy Conversion System 27 3.3 Three-Phase Full-Bridge Diode Bridge Rectifier 29 3.4 SEPIC DC/DC Converter 30 3.4.1 Operation Principles of the SEPIC DC/DC Converter 30 3.4.2 Design of the SEPIC DC/DC Converter 33 3.4.3 Control Strategy of the SEPIC DC/DC Converter 35 3.4.3.1 Constant Voltage Control 35 3.4.3.2 Maximum Power Point Tracking Control for DC Load 37 3.5 Single-Phase PWM Inverter 38 3.5.1 Operation Principles of the Single-Phase PWM Inverter 39 3.5.2 Control Strategy of the Single-Phase PWM Inverter 43 3.5.2.1 Control in the Stand-Alone Mode of Operation 43 3.5.2.2 Control in the Grid-Connected Mode of Operation 46 3.5.2.3 Maximum Power Point Tracking Control for AC Load 49 3.5.3 Design of the Filter Circuit 51 3.6 Summary 52 Chapter 4 Hardware and Software Implementation of the Power Converter Module for Wind Energy Conversion System 53 4.1 Introduction 53 4.2 Implementation of the Hardware Circuit 53 4.2.1 Power Stage Circuit 55 4.2.2 Interface Circuit of Digital Signal Processor 58 4.2.3 Voltage Sensor Circuit 60 4.2.4 Current Sensor Circuit 61 4.2.5 Gate Drive Circuit 63 4.3 Implementation of the Software Process 64 4.3.1 Main Process of the Control Algorithm 64 4.3.2 Control Algorithm for the SEPIC DC/DC Converter 66 4.3.2.1 Constant Voltage Control 66 4.3.2.2 Maximum Power Point Tracking Control 66 4.3.3 Process of Control Algorithm for the Single-Phase PWM Inverter 67 4.3.3.1 Stand-Alone Mode 67 4.3.3.2 Grid-Connected Mode 68 4.4 Summary 70 Chapter 5 Experimental Results of Wind Energy Conversion System 71 5.1 Introduction 71 5.2 Experimental Results of the Power Converter 72 5.2.1 SEPIC DC/DC Converter 72 5.2.2 Single-Phase PWM Inverter 74 5.2.2.1 Stand-Alone Mode of Operation 74 5.2.2.2 Grid-Connected Mode of Operation 76 5.3 Experimental Results of Wind Energy Conversion System 79 5.3.1 Constant Power Output Condition 79 5.3.2 Maximum Power Output Condition 83 5.4 Summary 88 Chapter 6 Conclusions and Future Works 89 6.1 Conclusions 89 6.2 Future Works 90 Bibliography 91 Vita 96

    [1] C. L. Li, Design and Realization of a Variable-Winding Generator for Ocean Power Systems., MS. thesis, National Cheng Kung University, R.O.C., Jul. 2008.
    [2] H. M. Kojabadi, L. Chang, and T. Boutot, “Development of a Novel Wind Turbine Simulator for Wind Energy Conversion Systems Using an Inverter-Controlled Induction Motor,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 547-552, Sep. 2004.
    [3] B. Neammanee, S. Sirisumrannukul, and S. Chatratana, “Development of a Wind Turbine Simulator for Wind Generator Testing,” International Energy Journal., vol. 8, pp. 21-28, Mar. 2007.
    [4] C. L. Kana, M. Thamodharan, and A. Wolf, “System Management of a Wind-Energy Converter,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 375-381, May. 2001.
    [5] A. A. C. Nunes, P. F. Seixas, P. C. Cortizo, and S. R. Silva, “Wind Turbine Simulator Using a DC Machine and a Power Reversible Converter,” in Proc. Int.Conf. Elect. Mach., vol. 3, Adelide, Australia, pp. 536-540, 1993.
    [6] P. E. Battaiotto, R. J. Mantz, and P. F. Puleston, “A Wind Turbine Emulator Based on a Dual DSP Processor System,” Control Eng. Practice., vol. 4, no. 9, pp. 1261-1266, 1996.
    [7] A. Mirecki, X. Roboam, and F. Richardeau, “Architecture Complexity and Energy Efficiency of Small Wind Turbines,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 660-670, Feb. 2007.
    [8] M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 130-135, Mar. 2006.
    [9] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless Output Maximization Control for Variable-Speed Wind Generation System Using IPMSG,” IEEE Trans. Ind. Applicat., vol. 41, no. 1, pp. 60-67, Jan./Feb. 2005.
    [10] K. Tan, and S. Islam, “Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 392-399, Jun. 2004.
    [11] Y. Higuchi, N. Yamamura, M. Ishida, and T. Hori, “An Improvement of Performance for Small-Scaled Wind Power Generating System with Permanent Magnet Type Synchronous Generator,” in Proc. IEEE IECON., vol.2, pp. 1037-1043, 2000.
    [12] S. Jiao, G. Hunter, V. Ramsden, and D. Patterson, “Control System Design for a 20kW Wind Turbine Generator with a Boost Converter and Battery Bank Load,” in Proc. IEEE PESC., vol.4, pp. 2203-2206, 2001.
    [13] C. L. Tseng, Development of DSP-Based Power Controller for Permanent-Magnet Synchronous Generators., MS. thesis, National Taiwan University of Science and Technology, R.O.C., May. 2001.
    [14] S. B. Tseng, Study of DSP-Based Wind Power Energy Conversion System, MS. thesis., National Cheng Kung University, R.O.C., Jun. 2003.
    [15] J. J. Kang, Development of Wind Power Control Systems for Permanent-Magnet Synchronous Generators., MS. thesis, National Taiwan University of Science and Technology, R.O.C., Jun. 2005.
    [16] H. M. Kojabadi, B. Yu, I. A. Gadoura, L. Chang, and M. Ghribi, “A Novel DSP-Based Current-Controlled PWM Strategy for Single Phase Grid Connected Inverters,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 985-993, Jul. 2006.
    [17] M. Prodanović, and T. C. Green, “Control and Filter Design of Three-Phase Inverters for High Power Quality Grid Connection,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 373-380, Jan. 2003.
    [18] M. G. Simes, B. K. Bose, and R. J. Spiegel, “Design and Performance Evaluation of a Fuzzy-Logic-Based Variable-Speed Wind Generation System,” IEEE Trans. Ind. Applicat., vol. 33, no. 4, pp. 956-965, Jul./Aug. 1997.
    [19] Y. Xue, L. Chang, S. B. Kjr, J. Bordonau, and T. Shimizu, “Topologies of Single-Phase Inverters for Small Distributed Power Generators: An Overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, Sep. 2004.
    [20] E. Koutroulis, and K. Kalaitzakis, “Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, Apr. 2006.
    [21] Q. Wang, and L. Chang, “An Intelligent Maximum Power Extraction Algorithm for Inverter-Based Variable Speed Wind Turbine Systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1242-1249, Sep. 2004.
    [22] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum Photovoltaic Power Tracking: an Algorithm for Rapidly Changing Atmospheric Conditions,” in Proc. IEE Gener. Transm. Distrib., vol. 142, no. 1, pp. 59-64, Jan. 1995.
    [23] T. Esram, and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, Jun. 2007.
    [24] S. H. Lin, Design and Implementation of Grid-Connected PV-Wind Power Converter System., MS. thesis, National Chung Cheng University, R.O.C., Jun. 2003.
    [25] J. W. Pao, The Evaluation of Operation Performance of a Photovoltaic System., MS. thesis, Chung Yuan University, R.O.C., Jun. 2002.
    [26] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Application, and Design, 3rd ed., Wiley, 2003.
    [27] J. Falin, “Designing DC/DC Converter Based on SEPIC Topology”, TI Inc. Analog Application Journal., pp. 18-23, 4Q 2008.
    [28] W. Gu, and D. Zhang, Designing a SEPIC Converter, National Semiconductor Application Note 1484., Apr. 2008.
    [29] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Line-Interactive UPS Using a Fuel Cell as the Primary Source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012-3021, Aug. 2008.
    [30] T. J. Moir, “Analysis of an Amplitude-Locked Loop,” IEEE Electron. Lett., vol. 31, no. 9, pp. 694-695, Apr. 1995.
    [31] An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump PLL’s, National Semiconductor Application Note 1001., Jul. 2001.
    [32] G. C. Hsieh, and J. C. Hung, “Phase-Locked Loop Techniques – A Survey,” IEEE Trans. Ind. Electron., vol. 43, no. 6, pp. 609-615, Dec. 1996.
    [33] L. Y. Chiang, Study and Implementation of the Single-Phase Three-Wire Photovoltaic Energy Conversion System., MS. thesis, National Cheng Kung University, R.O.C., 1997.
    [34] S. Nonaka, “A Utility-Connected Residentail PV System Adapted a Novel Single-Phase Composite PWM Voltage Source Inverter,” in Proc. IEEE WCPEC., vol. 1, pp. 1064-1068, Dec. 1994.
    [35] S. Nonaka, and Y. Neba “Single-Phase Composite PWM Voltage Source Converter,” in Proc. IEEE IASAM. , vol. 2, pp. 761-768, Oct. 1994.
    [36] P. A. Dahono, and A. Purwadi, “An LC Filter Design Method for Single-Phase PWM Inverters,” in Proc. IEEE Power Electronics and Drive Systems., pp. 571-576, 1995.
    [37] J. Kim, J. Choi, and H. Hong, “Output LC Filter Design of Voltage Source Inverter Considering the Performance of Controller,” in Proc. IEEE PowerCon., vol. 3, pp. 1659-1664, 2000.
    [38] W. H. Lin, DSP-Based Three-Phase Three-Wire Photovoltaic Energy Conversion System., MS. thesis, National Cheng Kung University, R.O.C., Jun. 2002.

    下載圖示 校內:2010-07-07公開
    校外:2011-07-07公開
    QR CODE