簡易檢索 / 詳目顯示

研究生: 顏偵翔
Yen, Chen-Hsiang
論文名稱: 十六氟銅苯二甲藍有機薄膜電晶體電傳輸性質之研究
The study of electronic transport properties of F16CuPc-based organic thin film transistors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 拉曼接觸電阻十六氟銅苯二甲藍有機薄膜電晶體
外文關鍵詞: contact resistance, F16CuPc, OTFT, raman
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以十六氟銅苯二甲藍(Copper hexadecafluorophthalocyanine, F16CuPc)作為主動層之有機薄膜電晶體的電傳輸性質。第一部份,採用下閘極式具有氧化銦錫(Indium tin oxide, ITO)底部接觸的源汲極元件結構,研究元件通道長度效應與電傳輸特性。第二部份,將F16CuPc成長於不同溫度的二氧化矽(SiO2)介電層表面,研究F16CuPc薄膜結構與元件電性間的關係。
    第一部分,製作具有不同通道長度的F16CuPc電晶體元件,利用金屬氧化半導體場效電晶體元件理論,計算元件電性參數,發現場效載子漂移率與臨界電壓皆隨著元件通道長度的增加而上升。並且使用閘極轉移法(gated-Transfer Length Method, gated-TLM)萃取出接觸電阻與通道電阻,發現ITO與F16CuPc的接觸電阻大於F16CuPc的通道電阻,並考慮接觸電阻來校正場效載子漂移率,發現電極與有機半導體的接觸面對於元件效能的影響甚大,且接觸電阻對短通道元件的影響大於長通道元件。
    第二部份,利用改變基板溫度從30至180 ℃,成長數個F16CuPc薄膜,並製作相對應的底部接觸式元件,使用紫外光可見光吸收光譜、拉曼散射光譜與原子力顯微鏡研究薄膜分子微結構與形態學,發現成長於120 ℃基板F16CuPc薄膜有最佳的載子遷移率,拉曼光譜結果指出苯環內C-C 振動於1193 cm-1與1540 cm-1兩譜線於120 ℃基板成長的F16CuPc薄膜有最小的半高寬,指出較均勻的分子微結構,可能有利載子傳輸。

    In this study, we have studied the thin-film structure and electronic transport properties of n-type copper hexadecafluorophthalocyanine (F16CuPc) organic semiconductor. In Part I, electrical characterization and carrier transport properties of F16CuPc-based organic thin-film transistors (OTFTs) were investigated using bottom gate device configuration with indium tin oxide (ITO) bottom source and drain contact. In Part II, we have fabricated various F16CuPc films on silicon dioxide (SiO2) gate dielectric surface with variable temperature. We have studied the correlation between the thin-film structure and electronic transport properties of the corresponding F16CuPc-based OTFTs.
    In Part I, we have fabricated F16CuPc-based OTFTs with various channel length rang from 5 m to 100 m and channel width of 500  m. The device characteristics were analyzed using the charge-sheet metal-oxide-semiconductor field-effect transistor model equation. We found that both the saturation and the linear field-effect mobility mobility and threshold voltage of F16CuPc-based OTFTs increased with increasing channel length. Further, the contact resistance and channel resistance of F16CuPc transistors were extracted using gated-transfer length method. The results of our experiments suggest that the contact resistance between F16CuPc and ITO electrodes plays important role in current-voltage characteristics. Comparison of the corrected and without corrected field-effect motilities for F16CuPc-based OTFTs, the contact effect for the short channel device is significantly larger than the long channel devices.
    In Part 2, the F16CuPc films were thermally evaporated on SiO2 surfaces with various substrate temperature in the range of 30 to 180 ℃. These F16CuPc films were characterized by absorption spectroscopy, micro-Raman spectroscopy, and atomic force microscopy. In order to study characteristics of the carrier transport properties for corresponding F16CuPc films, we have realized OTFTs structures with ITO-bottom source and drain electrodes. We observed the optimized field-effect mobility of F16CuPc-based OTFTs when the substrate temperature was 120 ℃. At the same time, we have observed the smallest half-width of aromatic C-C stretching at 1193 cm-1 and 1540 cm-1 bands, indicating a more homogeneous microstructure associated with lower molecular relaxation energy could benefit carrier transportation.

    中文摘要.....................................................................I 英文摘要.....................................................................III 誌謝.........................................................................V 目錄.........................................................................VI 表目錄.......................................................................X 圖目錄.......................................................................XI 第一章 簡介及理論基礎........................................................1 1-1前言....................................................................1 1-2 有機半導體傳輸機制.....................................................1 1-3 有機薄膜電晶體.........................................................2 1-3-1 有機薄膜電晶體基本構造.............................................3 1-3-2 N型有機薄膜電晶體基本原理..........................................4 1-3-3 有機薄膜電晶體的基本公式與特性.....................................5 1-4 N型有機薄膜電晶體的發展................................................7 1-5 本論文研究目的.........................................................9 第二章 實驗方法與元件製備....................................................19 2-1 有機材料...............................................................19 2-2 物理氣相沉積法(PVD)..................................................19 2-2-1熱蒸發蒸鍍法........................................................20 2-2-2電漿濺鍍法..........................................................20 2-2-3離子束濺渡法........................................................20 2-3 元件製備...............................................................21 2-3-1 基板製備...........................................................21 2-3-2 基板清洗...........................................................21 2-3-3 蒸鍍F16CuPc........................................................22 2-4 電性分析...............................................................22 2-5 接觸電阻與通道電阻.....................................................22 2-6 拉曼散射量測系統.......................................................23 2-7 原子力顯微鏡...........................................................24 第三章 底部接觸元件特性之研究................................................28 3-1 通道長度對元件電性影響.................................................28 3-2 偏壓與載子漂移率之關係.................................................30 3-2-1 閘極偏壓與載子漂移率之關係.........................................30 3-2-2 汲極和源極間偏壓與載子漂移率之關係.................................30 3-3 接觸電阻和通道電阻之萃取...............................................32 3-3-1 輸出曲線萃取接觸電阻和通道電阻.....................................32 3-3-2 轉換曲線萃取接觸電阻和通道電阻.....................................33 3-4 扣除接觸電阻校正載子遷移率.............................................34 3-4-1校正電流IDS.........................................................35 3-4-2校正電壓VGS和VDS....................................................36 第四章 薄膜結構與電傳輸特性關係之研究........................................62 4-1紫外-可見光吸收光譜.....................................................62 4-2不同激發雷射對拉曼光譜的影響............................................63 4-3不同基板溫度下成長F16CuPc的薄膜拉曼光譜分析.............................64 第五章 結論與未來展望........................................................80 參考文獻.....................................................................82

    [1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes” Appl. Phys. Lett., 1987, 51, 913-915.
    [2] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature, 1990, 347, 539-541.
    [3] F. Ebisawa, T. Kurokawa and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface” J. Appl. Phys., 1983, 54, 3255-3259.
    [4] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett., 1986, 49, 1210-1212.
    [5] W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV schottky diodes” J. Lumine., 1994, 60, 906-911.
    [6] N. S. Sariciftci, D. Braun,C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells” Appl. Phys. Lett., 1993, 62, 585-587.
    [7] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater., 2002, 14, 99-117.
    [8] J. E. Lilienfeld, US Patenet 1930, 1 745 175.
    [9] Y. Sun, Y. Liu and D. Zhu, “Advances in organic field-effect transistors” J. Mater. Chem., 2005, 15, 53-65.
    [10] H. Sirringhaus, N. Tessler and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers” Science, 1998, 280, 1741-1744.
    [11] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters and D. M. de Leeuw, “Low-cost all-polymer integrated circuits” Appl. Phys. Lett., 1998, 73, 108-110.
    [12] G. H. Gelinck, T. C. T. Geuns and D. M. de Leeuw, “High-performance all-polymer integrated circuits” Appl. Phys. Lett., 2000, 77, 1487-1489.
    [13] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca and R. Sarpeshkar, H. E. Katz, W. Li, “Large-scale complementary integrated circuits based on organic transistors” Nature, 2000, 403, 521-523.
    [14] S. M. Sze, “Semiconductor Devices:Physics and Technology 2nd Edition” John Wiley & Sons, INC, New York, 2001.
    [15] C. R. Newman, C. D. Frisbie, D. A. da S. Filho,Jean-Luc Bre´das, P. C. Ewbank and K. R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors” Chem. Mater., 2004, 16, 4436-4451.
    [16] C. Shen, A. Kahn and J. Schwartz, “Role of metal–molecule chemistry and interdiffusion on the electrical properties of an organic interface: The Al–F16CuPc case” J. Appl. Phys., 2001, 90, 6236-6242.
    [17] S. Hoshino, S. Nagamatsu, M. Chikamatsu, M. Misaki,Y. Yoshida, N. Tanigaki and K. Yase, “Device Performance of an n-Channel Organic Thin-Film Transistor with LiF/Al Bilayer Source and Drain Electrodes” Jpn. J. Appl. Phys., 2002, 41, 808-810.
    [18] G. Guillaud, M. A. Sadoun, M. M. Simon and Marcel Bouvet, “Field-effect transistors based on intrinsic molecular semiconductors” Chem. Phys. Lett., 1990, 167, 503-506.
    [19] Z. Bao, A. J. Lovinger and A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine”Appl. Phys. Lett., 1996, 69, 3066-3068.
    [20] Z. Bao, A. J. Lovinger and A. Dodabalapur, “Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors” Adv. Mater., 1997, 9, 42-44.
    [21] K. Y. Law, “Organic photoconductive materials: recent trends and developments” Chem. Rev., 1993, 93, 449-486.
    [22] H. S. Oh, D. H. Chung, C. H. Kim, J. U. Lee, S. W. Hur, S. K. Kim, T. W. Kim and J. W. Park, “Organic photovoltaic effects using CuPc/C60 layer” Mol. Cryst. Liq. Cryst., 2004, 424, 225–232.
    [23] Z. Bao, A. J. Lovinger and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors” J. Am. Chem. Soc., 1998, 120, 207-208.
    [24] E. Kol’tsov, T. Basova, P. Semyannikov and I. Igumenov, “Synthesis and investigations of copper hexadecafluorophthalocyanine CuPcF16” Mater. Chem. & Phys., 2004, 86, 222-227.
    [25] 李正中, “薄膜光學與鍍膜技術 第四版” 藝軒圖書出版社, 台北, 2004, 288-312.
    [26] P. V. Pesavento, R. J. Chesterfield, C. R. Newman and C. D. Frisbie, “Gated four-probe measurements on pentacene thin-film transistors : Contact resistance as a function of gate voltage and temperature” J. Appl. Phys., 2004, 96, 7312-7324.
    [27] R. Hattori, J. Kanicki, “Contact Resistance in Schottky Contact Gated-Four-Probe a-Si Thin-Film Transistor” Jpn. J. Appl. Phys., 2003, 42, 907-909.
    [28] P. V. Necliudov, M. S. Shur, D. J. Gundlach and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors” Solid-State Electronics., 2003, 47, 259-262.
    [29] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols and T. N. Jackson, “Contact resistance in organic thin film transistors” Solid-State Electronics., 2003, 47, 297-301.
    [30] I. Yagi, K. Tsukagoshi and Y. Aoyagi, “Direct observation of contact and channel resistance in pentacene four-terminal thin-film transistor patterned by laser ablation method” Appl. Phys. Lett., 2004, 84, 813-815.
    [31] R. A. Street and A. Salleo, “Contact effects in polymer transistors” Appl. Phys. Lett., 2002, 81, 2887-2889.
    [32] J. N. Haddock, X. Zhang, S. Zheng, Q. Zhang, S. R. Marder and B. Kippelen, “A comprehensive study of short channel effects in organic field-effect transistors” Organic Electronics, 2006, 7, 45-54.
    [33] A. Bolognesi, A. Di Carlo and P. Lugli, “Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors” Appl. Phys. Lett., 2002, 81, 4646-4648.
    [34] G. Horowitz, M. E. Hajlaoui and R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors” J. Appl. Phys., 2000, 87, 4456-4463.
    [35] G. Horowitz, “Organic Field-Effect Transistors” Adv. Mater., 1998, 10, 365-377.
    [36] N. Yoneya, M. Noda, N. Hirai and K. Nomoto, M. Wada, and J. Kasahara, “Reduction of contact resistance in pentacene thin-film transistors by direct carrier injection into a-few-molecular-layer channel” Appl. Phys. Lett., 2004, 85, 4663-4665.
    [37] D. R. Gamota, P.Brazis, K. Kalyanasundaram and J. Zhang, “Printed organic and molecular electronics” Kluwer Academic Publishers, Norwell, 2004
    [38] K. Seshadri and C. D. Frisbie, “Potentiometry of an operating organic semiconductor field-effect transistor” Appl. Phys. Lett., 2001, 78, 993-995.
    [39] R. Ye, M. Baba, Y. Ohishi, K. Mori and K. Suzuki, “On the Correlation between Morphology and Electronic Properties of Fluorinated Copper Phthalocyanine(F16CuPc) Thin Films” Mol. Cryst. Liq. Cryst., 2006, 444, 203-210.
    [40] Y. Imanishi, S. Hattori, A. Kakuta, and S. Numata, “Direct observation of an organic superlattice structure” Phys. Rev. Lett., 1993, 71, 2098-2101.
    [41] T. Manaka, K. Taguchi, K. Ishikawa and H. Takezoe, “Highly Aligned α-Type Copper Phthalocyanine Formed on Rubbed Polyimide Alignment Layer” Jpn. J. Appl. Phys., 2000, 39, 4910-4911.
    [42] A. S. Davydov, “Theory of Molecular Exitons” Nauka, Moscow, 1968.
    [43] J. O. Oss, F. Schreiber, V. Kruppa, H. Dosch, M. Garriga, M. I. Alonso and F. Cerdeira, “Controlled Molecular Alignment in Phthalocyanine Thin Films on Stepped Sapphire Surfaces” Adv. Funct. Mater., 2002, 12, 455-460.
    [44] D. G. de Oteyza, E. Barrena, J. O. Oss, H. Dosch, S. Meyer and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates” Appl. Phys. Lett., 2005, 87, 183504(1-3).
    [45] V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T.G. Bill and J. L. Bre´das, “Hole- and Electron-Vibrational Couplings in Oligoacene Crystals:Intramolecular Contributions” Phys. Rev. Lett., 2002, 89, 275503(1-4).

    下載圖示 校內:2009-01-25公開
    校外:2009-01-25公開
    QR CODE