| 研究生: |
杜彥頤 Du, Yan-Yi |
|---|---|
| 論文名稱: |
適用於非線性資料採樣系統以進化計算型重複學習控制器與線性二次式追蹤器之混合式設計為基底的觀測型數位重新設計追蹤器 Observer-Based Digital Redesign Tracker for Nonlinear Sampled Data Systems via a Hybrid Design of EP-Based Iterative Learning Control and Linear Quadratic Analog Tracker |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 重複學習控制器 、進化計算 、數位重新設計 、線性二次式追蹤器 |
| 外文關鍵詞: | Linear quadratic analog tracker, Digital redesign, Iterative learning control, Evolutionary programming |
| 相關次數: | 點閱:131 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,針對輸出響應追蹤問題,提出一種適用於非線性資料採樣系統的觀測型數位重新設計追蹤器。此追蹤器所需的參數是透過具有進化演算法特性之重複學習控制器與線性二次式追蹤器的混合式設計而給定。該追蹤器不僅於適當採樣時間裡,呈現優異的暫態與穩態響應。而且,較大的採樣時間中,其控制效能優於原先的數位重新設計追蹤器。首先,透過重複學習控制器與線性二次式類比追蹤器的混合式設計取得理想狀態。接著,以此狀態為操作點,根據最佳線性化方法,將每個採樣時間點的非線性系統轉換成最佳線性模型。最後,運用這些線性模型設計具有該類比控制器之優異效能的觀測型數位重新設計追蹤器。設計過程中,當系統狀態無法獲得時,針對此追蹤器設計一具有線性二次式調節器特性的觀測器。另外,為了加速重複學習控制器的收斂速度,以進化演算法搜尋最佳學習增益。再者,針對此學習控制器提出三項改善: 控制輸入訊號初始值設定、運用最佳線性化方法與線性二次式調節器技術設計觀測器、適用於二階微分系統其輸出矩陣 與輸入矩陣 之乘積為非滿秩的改良式輸入訊號更新法則。最後,利用數個多輸入多輸出非線性系統的例子展現本文所提方法之優異效果。
In this thesis, a novel observer-based digital redesign tracker, whose parameters are given by a hybrid design of EP-based iterative learning control and linear quadratic analog tracker, is proposed to resolve the output tracking problem for a class of nonlinear sampled data systems. The tracker possesses good tracking performance in transient state response as well as in steady that when an appropriate sampling time is given. Furthermore, its tracking result is better than that of an original digital redesign tracker at a large sampling time. Firstly, the ideal system state is obtained from the hybrid design of iterative learning control (ILC) and linear quadratic analog tracker (LQAT). Then, according to the optimal linearization algorithm, the nonlinear system will be converted into the linear model by the state as operating point at each sampling time. Finally, these models will be applied to design the digital redesign tracker which preserves the perfect tracking performance of the analog controller. In addition, an observer, whose design idea is derived from the method of the linear quadratic regulator (LQR), will be applied in the digital redesign tracker, when some system state could not be acquired. Furthermore, in order to improve the learning convergence of ILC, evolutionary programming will be applied to search for the optimal learning gain of ILC; three improved subjects of ILC, the initial control input decision, the observer design by optimal linearization algorithm and LQR, and the improved update learning rule for the second order derivative system, whose product matrix of C and B is not full rank, will be presented in this thesis. Several MIMO illustrative examples will be presented to demonstrate the effectiveness of the proposed methodology.
[1] J. Xu, G. Chen, and L. S. Shieh, “Digital redesign for controlling chaotic Chua’s circuit,” IEEE Tran. Aerosp. Electron. Syst., vol. 32, pp. 1488-1499, Oct. 1996.
[2] Y. H. Joo, G. Chen, and L. S. Shieh, “Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems,” IEEE Trans. Fuzzy Systems, vol. 7, pp.394-408, Aug. 1999.
[3] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Trans. on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.
[4] L. S. Shieh, W. M. Wang, J. Bain, and J. W. Sunkel, “Design of lifted dual-rate digital controllers for X-38 vehicle,” AIAA, J. Guid. Control Dyn., vol. 23, pp. 629-639, 2000.
[5] H. J. Lee, J. B. Park, and Y. H. Joo, “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Trans. Circuits and Systems-I, Fundamental Theory and Applications, vol. 50, no. 12, Dec. 2003.
[6] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Robotic Syst., vol. 1, pp. 123-140, 1984.
[7] D.A. Bristow, M. Tharayil, and A.G. Alleyne, “A Survey of Iterative Learning Control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96-114, Jun. 2006.
[8] M. Norrlof, “An adaptive iterative learning control algorithm with experiments on an industrial robot,” IEEE Trans. Robot. Automat., vol. 18, no. 2, pp. 245-251, 2002.
[9] D.-I. Kim and S. Kim, “An iterative learning control method with application for CNC machine tools,” IEEE Trans. Ind. Applicat., vol. 32, no. 1, pp. 66-72, 1996.
[10] C. Mi, H. Lin, and Y. Zhang, “Iterative learning control of antilock braking of electric and hybrid vehicles,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 486-494, 2005.
[11] T. Y. Kuc, J. S. Lee, and K. Nam, “An iterative learning control theory for a class of nonlinear dynamic systems,” Automatica, vol. 28, no. 6, pp. 1215-1221, 1992.
[12] H. S. Ahn, C.H. Choi, and K. B. Kim, “Iterative learning control for a class of nonlinear systems,” Automatica, vol. 29, no. 6, pp. 1575-1578, 1993.
[13] J. X. Xu and Z. Qu, “Robust iterative learning control for a class of nonlinear systems,” Automatica, vol. 34, pp. 983-988, 1998.
[14] A. Taybei and J. X. Xu, “Observer-based iterative learning control for a class of time-varying nonlinear systems,” IEEE Transcations on Circuts and Systems-I, Fundamental Theory and Application, vol. 50, no.3, pp. 452-455, 2003.
[15] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematic, vol. 2, pp. 84-90, 1960.
[16] J. C. Van, “Verteilungsfunktionen,” Proc. Kon Akad. Wet., Amstrerdam, vol. 38, pp. 1058-1066, 1935.
[17] S. M. Guo, L. S. Shieh, C. F. Lin, and J. Chandra, “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” Int, J. Birfurcation Chaos, vol. 11, no. 4, pp. 1079-1113, 2001.