| 研究生: |
黃俊霖 Huang, Jyun-Lin |
|---|---|
| 論文名稱: |
超低溫共燒陶瓷材料(Mg1-xZnx)V2O6 及 Na_2(Mg_(5-x)Zn_x)(MoO_4)_6(x= 0 – 0.09)之微波介電特性與應用 Microwave Dielectric Properties and Applications of Ultra-Low Temperature Co-fired Ceramics Using (Mg1-xZnx)V2O6 and Na_2(Mg_(5-x)Zn_x)(MoO_4)_6 (x= 0 – 0.09) |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 微波介電特性 、超低溫共燒陶瓷 、低損耗 、高品質因子 |
| 外文關鍵詞: | Microwave dielectric properties, ULTCC, low-loss, High-Q |
| 相關次數: | 點閱:78 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要分別介紹三大部分,第一和二部分將介紹新開發的微波介電材料;第三部分將設計一個濾波器使用在FR4、Al_2 O_3以及0.99Na_2 (Mg_4.93 Zn_0.07 ) (MoO_4 )_6-0.01TiO_2三種不同基板上,進而分析其模擬與實測的結果。
首先,第一部分將會介紹 (Mg1-xZnx)V2O6 (x=0–0.09)陶瓷之微波介電特性,由實驗結果發現,在燒結溫度為610℃、x=0.07持溫4小時下,可得到最佳的微波介電特性ε_r~9.3、Q×f~15,300 GHz、τ_f~-3.4 ppm⁄℃ ; Na2(Mg5-xZnx)(MoO4)6 (x= 0–0.09) 陶瓷之微波介電特性,由實驗結果發現,在燒結溫度為570℃、x=0.07持溫4小時下,可得到最佳的微波介電特性ε_r~7.6、Q×f~46,000 GHz、τ_f~-25.4 ppm⁄℃。
第二部分為添加少量TiO_2使材料之τ_f趨近於0,探討此材料(1-x)Na2(Mg4.93Zn0.07)(MoO4)6 -xTiO2 (x=0.5–1.5 mol%)陶瓷之微波介電特性,由實驗結果可以發現,當燒結溫度為570℃、x=1.0%的0.99Na2(Mg4.93Zn0.07)(MoO4)6 -0.01TiO2擁有最趨近於0ppm⁄℃的τ_f,而其微波介電特性ε_r~8.8、Q×f~33,100 GHz、τ_f~-4.29 ppm⁄℃ 。
最後,第三部分使用HFSS模擬濾波器電路,並將模擬出的電路實作於FR4、Al_2 O_3以及0.99Na2(Mg4.93Zn0.07)(MoO4)6 -0.01TiO2三種不同的基板上,由結果互相比較可以發現,低介電損耗的陶瓷材料能增加濾波器的表現,而較高的Q×f值則可以提高濾波器在頻率選擇上的表現。
A novel ultra-low-firing microwave dielectric ceramics of (Mg1-xZnx)V2O6 and Na2(Mg5-xZnx)(MoO4)6 (x= 0–0.09) were investigated as potential materials for Ultra-Low-semperature Co-fired Ceramics(ULTCC) . Both materials were synthesized using the solid state reaction. The experimental results show that the ceramics (Mg0.93Zn0.07)V2O6 has best microwave dielectric properties ε_r~9.3, Q×f~15,300 GHz and τ_f~-3.4 ppm⁄℃ when sintered at 610℃ for 4 hours﹔the ceramics Na2(Mg5-xZnx)(MoO4)6 has best microwave dielectric properties ε_r~7.6,Q×f~46,000 GHz and τ_f~-25.4 ppm⁄℃ when sintered at 570℃ for 4 hours and the ceramics 0.99Na2(Mg4.93Zn0.07)(MoO4)6 -0.01TiO2 has best microwave dielectric properties ε_r~8.8,Q×f~33,100 GHz and τ_f~-4.29 ppm⁄℃ when sintered at 570℃ for 4 hours.
Moreover, the band-pass filter with Square open-loop resonator which contains Open-stub was made into the substrate in this paper. According to the results of measurements, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate, and its wave propagation delay of devices for high frequency applications was decreased by using low dielectric constant ceramics and using high Qxf values ceramics can improve the frequency selection of the filters.
[1] G.-G. Yao, C.-J. Pei, J.-G. Xu, P. Liu, J.-P. Zhou, and H.-W. Zhang, "Microwave dielectric properties of CaV2O6 with ultra-low dielectric," vol. 26, no. 10, pp. 7719-7722, 2015.
[2] C. J, L. C, X. H, T. Y, and F. L, "SrV2O6: An ultralow-firing microwave dielectric ceramic for LTCC applications," Materials Research Bulletin, vol. 2010, 2017.
[3] U. A. Neelakantan, S. E. Kalathil, and R. Ratheesh, "Structure and Microwave Dielectric Properties of Ultralow-Temperature Cofirable BaV2O6 Ceramics," European Journal of Inorganic Chemistry/, vol. 2015, no. 2, 2014.
[4] D.Zhou et al., "Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) Lyonsite-Related-Type Ceramics with Ultra-Low Sintering Temperatures," Journal of the American Ceramic Society, vol. 94, pp. 802-805, 2010.
[5] J. Dhanya, A. V. Basiluddeen, and R. Ratheesh, "Synthesis of ultra low temperature sinterable Na2Zn5(MoO4)6 ceramics and the effect of microstructure on microwave dielectric properties," Scripta Materialia , 2017.
[6] F. K. Vreeland, "A Sine-Wave Electrical Oscillator of the Organ Pipe Type," Physical Review (Series I), vol. 27, no. 4, p. 286, 1908.
[7] J. Goerth, "Early magnetron development especially in Germany. in Origins and Evolution of the Cavity Magnetron (CAVMAG)," IEEE, 2010.
[8] R. H. Varian and S. F. Varian, "A high frequency oscillator and amplifier," Journal of Applied Physics, vol. 10, no. 5, pp. 321-327, 1939.
[9] M. Thumm, "Historical German contributions to physics and applications of electromagnetic oscillations and waves.," 2001.
[10] P. Redhead, "The Invention of the Cavity Magnetron and its Introduction into Canada and the USA.," Physics in Canada, vol. 57, no. 6, p. 321, 2001.
[11] R. Richtmyer, "Dielectric resonators," Journal of Applied Physics, vol. 10, no. 6, pp. 391-398, 1939.
[12] S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators.," IEEE Transactions on Microwave Theory and Techniques, vol. 16, no. 4, pp. 218-227, 1968.
[13] W. F. Smith, 劉品均(譯), and 施佑蓉(譯), "材料科學與工程(第三版)," 2005.
[14] W. J. Huppmann and G. Petzow, "Sintering processes," Plenum Press, 1979.
[15] R. German, "Liquid phase sintering," pp. 5-8, 1985.
[16] J. W. Cahn and R. Heady, "Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles. ," Journal of the American Ceramic Society, vol. 53, no. 7, pp. 406-409, 1970.
[17] J. Jean and C. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys.," Journal of materials science, vol. 24, no. 2, pp. 500-504, 1989.
[18] D. M. Pozar, "Microwave engineering," John Wiley & Sons, 2009.
[19] D. Kajfez, "Basic principles give understanding of dielectric waveguides and resonators.," Microwave System News, vol. 13, pp. 152-161, 1983.
[20] D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators.," IEEE transactions on Microwave Theory and Techniques., vol. 32, no. 12, pp. 1609-1616, 1984.
[21] 張盛富 and 戴明鳳, "無線通信之射頻被動電路設計," 全華出版社, 1998.
[22] 鄭景太, "淺談高頻低損失介電材料.," 工業材料, vol. 176, 2001.
[23] W.D.Kingery, "陶瓷材料概論.," 曉園出版社, 1988.
[24] S. J. Penn et al., "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," J Am Ceram Soc, vol. 80, no. 7, pp. 1885-1888, 1997.
[25] H. Mingzhe, Z. Dongxiang, and G. Shuping, "Research on the Influential Factors of Microwave Dielectric Ceramics," 材料導報, vol. 18, no. 8, 2004.
[26] M. T. Sebastian and H. Jantunen, "Low loss dielectric materials for LTCC applications: a review.," International Materials Reviews, vol. 53, no. 2, pp. 57-90, 2008.
[27] I. Y, "Multilayered low temperature cofired ceramics (LTCC) technology[M]." New York: Springer Science & Business Media pp. 1-98, 2005.
[28] Z. D, R. C. A, and P. L. X, "Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature [J]," J Am Ceram Soc, vol. 94, no. 2, pp. 348-350, 2011.
[29] O. M, O. H, and K. A, "Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]." J Eur Ceram Soc vol. 25, no. 12, pp. 2877-2881, 2005.
[30] C. S. Y, P. H. F, and T. C. F, "Microwave dielectric properties of ultra-low temperature fired Li3BO3 ceramic[J]." J Alloy Compd, vol. 698, pp. 814-818, 2017.
[31] C. X, Z. W, and Z. B, "Low sintering microwave dielectric ceramics and composites based on Bi2O3-B2O3 [J]." J Am Ceram Soc, vol. 95, no. 10, pp. 3207-3213, 2012.
[32] R. L. Geiger, P. E. Allen, and N. R. Strader, "VLSI design techniques for analog and digital circuits.," McGraw-Hill New York, vol. 90, 1990.
[33] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Transactions on microwave theory and techniques., vol. 16, no. 6, pp. 342-350, 1968.
[34] J.-S. G. Hong and M. J. Lancaster, "Microstrip filters for RF/microwave applications.," John Wiley & Sons., vol. 167, 2004.
[35] R. Garg, I. Bahl, and M. Bozzi, "Microstrip lines and slotlines. ," Artech house, 2013.
[36] G. Kompa, "Practical microstrip design and applications. ," Artech House., 2005.
[37] G. L. Matthaei, L. Young, and E. M. T. Jones, "Microwave filters, impedance matching networks and coupling structures. ," Artech House, 1980.
[38] E. J. Denlinger, "Losses of microstrip lines. ," IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 6, pp. 513-522, 1980.
[39] B. Hakki and P. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range. ," IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402-410, 1960.
[40] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. ," IEEE Transactions on Microwave Theory and Techniques vol. 18, no. 8, pp. 476-485, 1970.
[41] P. Wheless and D. Kajfez., "The use of higher resonant modes in measuring the dielectric constant of dielectric resonators. in Microwave Symposium Digest," IEEE MTT-S International., 1985.
[42] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. ," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 7, pp. 586-592, 1985.
[43] M. R. Joung, "Formation process and microwave dielectric properties of the R2V2O7 (R= Ba, Sr, and Ca) ceramics.," Journal of the American Ceramic Society, vol. 92, no. 12, pp. 3092-3094, 2009.
[44] R. D. Shannon, "Dielectric polarizabilities of ions in oxides and fluorides. ," Journal of Apllied physics, vol. 73, no. 1, pp. 348-366, 1993.
[45] Q. A. Acton and PhD, "Issues in Applied Physics," 2011.
[46] R. F. Klevtsova, V. G. Kim, and P. V. Klevtsov, Sov. Phys. Crystallogr, vol. 25, pp. 657-660, 1980.
[47] F. D. Hardcastle and I. E. Wachs, J. Phys. Chem., vol. 95, pp. 10763-10772, 1991.
[48] F. D. Hardcastle and I. E. Wachs, J. Raman Spectrosc., vol. 21, pp. 683-691, 1990.
[49] N. K. James and R. Ratheesh, J. Am. Ceram. Soc., vol. 93, pp. 931-933, 2010.
[50] E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, "Effects of packing fraction and bond valence on microwave dielectric properties of A(2+)B(6+)O(4) (A(2+): Ca, Pb, Ba; B6+: Mo, W) ceramics," J Eur Ceram Soc, vol. 30, pp. 1731-1736, 2010.