簡易檢索 / 詳目顯示

研究生: 黃凱輝
Huang, Kai-Hui
論文名稱: 多孔隙瀝青混凝土的產製、品質和績效
Production, Quality and Performance of Porous Asphalt Concrete
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 154
中文關鍵詞: 多孔隙瀝青混凝土
外文關鍵詞: porous asphalt concrete, PAC
相關次數: 點閱:88下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內於1990年引進多孔隙瀝青混凝土(Porous Asphalt Concrete, PAC)鋪面技術,交通部公路總局2015年首次於快速道路新工路段全面鋪築PAC,藉由鋪築前溝通,從產製到現地施作過程,進行試拌、試鋪、實鋪和成效評估,探討材料及施工品質。研究顯示實驗室配比設計與工地使用之材料往往存有差異,實際配比需進行試拌方可作為PAC產製之依據。高黏度改質瀝青不適用於傳統瀝青的黏度與溫度曲線,實際拌和廠出料溫度應考量瀝青混合料現場工作性、運送距離和施工期間氣候因素,依試拌、試鋪情形分別決定拌和與滾壓溫度。本研究完工後PAC鋪面平均透水量為1149 ml/15 s,IRI未超過3.5 m/km,BPN值介於57至72間,顯示初期PAC鋪面績效良好。

    Our country introduced the pavement technology of Porous Asphalt Concrete (PAC) in 1990. In 2015, it was the first time that the Ministry of Transport Highway Bureau fully paved the PAC for the new expressway. By communicating before paving the way, this study carries on the mixing trial, paving trial, actual paving, and the performance of evaluation, and also evaluates the quality of materials and construction from the production to the process of the site application. As the research indicates, there are differences between the laboratory mixing design and the use of materials. Conducting mixing trial as the foundation for the PAC production for the actual trial mix ratio is needed. The high viscosity modified asphalt is not suitable for traditional bitumen viscosity and temperature curve. The actual trial mix ratio and the plant discharge temperature should consider the field of asphalt workability, delivery distance and climatic factor during the construction period and determine to mix and rolling temperatures in accordance with the trial mix, try laying situations respectively. This study shows 1149 ml/15s of average water permeability, below 3.5 m/km of IRI, and 57 to 72 of BPN value. After the PAC is completed; therefore, it indicates that PAC pavement in the initial stage has a good performance.

    摘要I 英文延伸摘要II 致謝VI 目錄VII 表目錄XII 圖目錄XIV 第一章 緒論1-1 1.1 前言1-1 1.2 研究動機1-3 1.3 研究目的1-4 1.4 研究範圍1-4 第二章 文獻回顧2-1 2.1 PAC粒料2-3 2.2 PAC瀝青2-4 2.3 改質瀝青2-5 2.4 高分子改質劑2-5 2.4.1 彈性體2-6 2.4.2 塑性體2-7 2.4.3 反應性聚合物2-7 2.5 SBS改質瀝青2-8 2.5.1 SBS改質機制2-10 2.5.2 SBS改質結構2-12 2.5.3 SBS與瀝青的相容性2-14 2.5.4 SBS改質瀝青的離析及降解2-18 2.6 添加劑2-20 第三章 研究方法3-1 3.1 研究流程3-1 3.2 材料性質3-3 3.2.1 瀝青3-3 3.2.2 粒料3-4 3.2.3 填充料3-6 3.2.4 級配3-8 3.3 配比設計3-9 3.4 瀝青拌和廠設備檢驗3-11 3.5 PAC試拌3-12 3.6 PAC試鋪3-12 3.7 PAC實鋪3-13 3.8 現地試驗3-17 3.8.1 功能性評估-透水量試驗3-17 3.8.2 功能性評估-噪音量試驗3-18 3.8.3 耐久性評估-平坦度試驗3-19 3.8.4 耐久性評估-車轍量試驗3-21 3.8.5 安全性評估-抗滑係數試驗3-22 第四章 結果與討論4-1 4.1 鋪築前之準備工作4-1 4.1.1 瀝青拌和廠選定前4-1 4.1.2 瀝青拌和廠選定後4-4 4.1.3 橋面版修整4-6 4.2 PAC材料與配比設計4-14 4.2.1 瀝青4-14 4.2.2 粒料4-15 4.2.3 配比設計4-16 4.3 PAC試拌4-18 4.3.1 第一次試拌4-19 4.3.2 第二次試拌4-24 4.3.3 試拌綜合評估4-29 4.4 PAC試鋪4-31 4.4.1 試鋪前準備工作4-31 4.4.2 試鋪4-32 4.4.3 試鋪綜合評估4-37 4.5 PAC實鋪4-41 4.5.1 鋪裝機械4-41 4.5.2 平衡鋪設4-42 4.5.3 橋梁伸縮縫預留槽之處理4-43 4.5.4 伸縮縫排水4-47 4.5.5 鋪面保護4-48 4.6 PAC績效評估4-49 4.5.1 功能性評估-透水量試驗結果4-52 4.5.2 功能性評估-噪音量試驗結果4-53 4.5.3 耐久性評估-平坦度試驗結果4-54 4.5.4 耐久性評估-車轍量試驗結果4-55 4.5.5 安全性評估-抗滑性試驗結果4-56 第五章 結論與建議5-1 5.1 結論5-1 5.2 建議5-3 參考文獻 參-1 附錄 附-1

    日本道路協會(1988),「鋪裝試驗法便覽」,日本。
    日本道路協會(1999),「排水性鋪裝技術指針(案)」,日本。
    施工綱要規範(2013),「第 02798 章多孔隙瀝青混凝土鋪面V3.0」,行政院公共工程委員會。
    陳建旭、何漢章、黃俊富、劉忠崙 (2016).「改質瀝青之種類、機制、產製與應用」,台灣公路工程,第42卷第8期,pp.13-42.
    黃文權,(2016).「台61線WH77-C標九塊厝交流道新建工程榮獲104年金安獎佳作之經驗分享」,台灣公路工程,第42卷第5期,pp.30-42.
    楊林江、李井軒 (2001).「SBS改性瀝青的生產與應用」,人民交通出版社,北京。
    AASHTO (2013). Hot-Mix Asphalt Paving Handbook 2000 , Washington, D.C.
    Akihiro, M., J. Toshiro, N. Takaaki, I. Hiroshi, T. Katsuya, and K. Akihiko, (2014). “Construction and Pavement Properties After Seven Years in Porous Asphalt with Long Life,” Construction and Building Materials, Vol.50, pp.401-413.
    Alvarez, A.E., A.E. Martin, and C. Estakhri, (2011). “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures,” Construction and Building Materials, Vol.25, pp.108-113.
    American Society for Testing and Materials (1993). Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester, ASTM E303-93.
    American Society for Testing and Materials (2010). Standard Test Method for Measuring Rut-Depth of Pavement Surfaces Using a Straightedge, ASTM E1703/E1703M-10.
    Brown, E.R., P.S. Kandhal, F.L. Roberts, Y. Richard Kim, D.Y. Lee, and T.W. Kennedy (2009). “Hot Mix Asphalt Materials, Mixture Design, And Construction,” NAPA Research And Education Foundation, Lanham Maryland, Third Edition, pp.567-596.
    Chen, J.S., M.C. Liao, and M.S. Shiah, (2002). “Asphalt Modified by Styrene–Butadiene–Styrene Triblock Copolymer: Morphology and Model,” Journal of Materials in Civil Engineering, Vol.14, pp.224-229.
    Chen J.S., and C.C. Huang, (2006). “Fundamental Characterization of SBS-Modified Asphalt Mixed with Sulfur,” Journal of Applied Polymer Science, Vol.103(5), pp.2817-2825.
    Dong, F.Q., W.Z. Zhao, Y.Z. Zhang, J.M. Wei, W.Y. Fan, Y.J. Yu, and Z. Wang, (2014). “Influence of SBS and Asphalt on SBS Dispersion and the Performance of Modified Asphalt,” Construction and Building Materials, Vol.62, pp.1-7.
    Dongre, R., J.W. Button, R.Q. Kluttz, and D.A. Anderson, (1997). “Evaluation of Superpave Binder Specification with Performance of Polymer-Modified Asphalt Pavement,” Progress of Superpave : Evaluation and Implementation, ASTM STP 1322, pp.80-100.
    Frigio F., E. Pasquini, G. Ferrotti, and F. Canestrari, (2013). “Improved Durability of Recycled Porous Asphalt,” Construction and Building Materials, Vol.48, pp.755-763.
    Galooyak, S.S., B. Dabir, A.E. Nazarbeygi, and A. Moeini, (2010). “Rheological Properties and Storage Stability of Bitumen/SBS/Montmorillonite Composites,” Construction and Building Materials, Vol.24(3), pp.300-307.
    Gruber, I., I. Zinovik, L. Holzer, A. Flisch, and L.D. Poulikakos, (2012). “A Computational Study of the Effect of Structural Anisotropy of Porous Asphalt on Hydraulic Conductivity,” Construction and Building Materials, Vol.36, pp.66-77.
    Isacsson, U. and X. Lu, (1995).“ Testing and Appraisal of Polymer Modified Road Bitumens-State of the Art, “Materials and Structures, Vol.28, pp.139-159.
    Lee, C.S.Y., and G.G. Fleming, (1996). Measurement of Highway-Related Noise, U.S. Department of Transportation, FHWA-PD-96-046.
    Kok, B.V., and M. Akpolat, (2015). “Effects of Using Sasobit and SBS on the Engineering Properties of Bitumen and Stone Mastic Asphalt,” Journal of Materials in Civil Engineering, Vol.27, 04015006.
    Larsen D.O., J.L. Alessandrini, A. Bosch, and M.S. Cortizo, (2009). “Micro-Structural and Rheological Characteristics of SBS-Asphalt Blends During Their Manufacturing,” Construction and Building Materials, Vol.23, pp.2769-2774.
    Lesueur, D., (2009). “The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification,” Advances in Colloid and Interface Science, Vol.145, pp.42-82.
    Masson, J.F., P. Collins, G. Robertson, J.R. Woods, and J. Margeson, (2003). “Thermodynamics, Phase Diagrams, and Stability Of Bitumen-Polymer Blends,” Energy & Fuels, Vol17(3), pp.714-724.
    Mo, L.T., M. Huurman, M.F. Woldekidan, S.P. Wu, and A.A.A. Molenaar, (2010). “Investigation into Material Optimization and Development for Improved Ravelling Resistant Porous Asphalt Concrete,” Materials and Design, Vol.31, pp. 3194-3206.
    Niu, Y.F., Z.Q. Zhu, J.Y. Xiao, Z.C. Liu, and B. Liang, (2016). “Evaluation of Storage Stability of Styrene-Butadiene- Styrene Block Copolymer-Modified Asphalt Via Electrochemical Analysis,” Construction and Building Materials, Vol.107, pp.38-43.
    Polacco, G., J. Stastna, D. Biondi, and L. Zanzotto, (2006). “Relation Between Polymer Architecture and Nonlinear Viscoelastic Behavior of Modified Asphalts,” Current Opinion in Colloid and Interface Science, No.11, pp.230-245.
    Poulikakos L.D., and Partl M.N., (2012). “A Multi-Scale Fundamental Investigation of Moisture Induced Deterioration of Porous Asphalt Concrete,” Construction and Building Materials, Vol. 36, pp.1025-1035.
    Sengoz, B., A. Topal, and G. Isikyakar, (2009). “Morphology and Image Analysis of Polymer Modified Bitumens,” Construction and Building Materials, Vol.23(5), pp.1986-1992.
    Shanks, R. and I. Kong, (2012).Thermoplastic Elastomers, Applied Sciences, RMIT University, Melbourne Australia.
    Wang, Q., M. Liao, Y. Wang, and Y. Ren, (2007). “Characterization of End-Functionalized Styrenebutadiene-Styrene Copolymers and Their Application in Modified Asphalt,” Journal of Applied Polymer Science, Vol.103(1), pp.8-16.
    Wang, T., T. Yi, and Z. Yuzhen, (2010). “The Compatibility of SBS-Modified Asphalt,” Petroleum Science and Technology, Vol.28(7), pp.764-772.
    Urquhart, R., and K.Y. Khoo, (2013). Investigations into the Effects of Polymer Segregations and Degradation in Polymer Modified Binders, AP-T227-13, Austroads, Sydney.
    Zhang, F., J. Yu, and J. Han, (2011). “Effects of Thermal Oxidative Ageing on Dynamic Viscosity,Tg/Dtg, Dta and FTIR of SBS and SBS/Sulfur-Modified Asphalts,” Construction and Building Materials, Vol.25(1), pp.129-137.
    Zhang Y., W. Verwaal, M.F.C. van de Ven, A.A.A. Molenaar, S.P. Wu, (2015). “Using High-Resolution Industrial CT Scan to Detect the Distribution of Rejuvenation Products in Porous Asphalt Concrete,” Construction and Building Materials, Vol.100, pp.1-10.
    Zhu J., B. Birgisson, and N. Kringos, (2014). “Polymer Modification of Bitumen: Advances and Challenges,” European Polymer Journal, Vol.54, pp.18-38.

    無法下載圖示 校內:2022-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE