簡易檢索 / 詳目顯示

研究生: 李筱菁
Lee, Hsiao-Ching
論文名稱: SnO2-based薄膜氣體感測靈敏度之研究
Study on Gas Sensitivity of SnO2-based Thin Film
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 115
中文關鍵詞: 氣體感測器二氧化錫二氧化鈦
外文關鍵詞: TiO2, SnO2, gas sensor
相關次數: 點閱:126下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化錫基薄膜材料因為具有許多優良特性,常作為氣體感測性質研究之主要材料。本文中以二氧化錫(SnO2)及二氧化錫/二氧化鈦(SnO2/TiO2)薄膜分別檢測其酒精及氧氣之感測特性。本實驗利用磁控濺鍍作為薄膜沉積之方法,並利用膜厚量測儀、低掠角繞射儀、掃描式電子顯微鏡、原子力顯微鏡及電性量測儀,量測其材料及電性特性。在以二氧化錫製備酒精感測薄膜方面,以1 at﹪Li-SnO2為靶材,固定工作壓力為3 mtorr,濺鍍功率為150Watts,固定總氣體流量為50sccm,調控不同濺鍍氣氛(O2/Ar流量比由0.2至0.8),再於400℃下退火一小時,比較不同O2/Ar流量比對酒精靈敏度之影響。由實驗結果發現,SnO2薄膜之酒精靈敏度會隨著製程中之O2/Ar流量比增加而變小。在未退火前之試片,當O2/Ar流量比由0.8到0.2時,其酒精靈敏度由53增加至126。在經過退火之後,其酒精靈敏度也隨O2/Ar流量比由0.8到0.2而由27增加至104。並且當O2/Ar 流量比為0.2時,具最佳之酒精靈敏度。

    在以二氧化錫/二氧化鈦製備氧氣感測薄膜方面,以二氧化錫及二氧化鈦為靶材,固定Ar:O2流量為4:1及總膜層厚度為300nm,改變膜層中不同二氧化錫/二氧化鈦之厚度比例(250/50、 200/100、150/150、100/200及50/250 nm),再分別於550℃及650℃下退火4小時,比較不同二氧化錫/二氧化鈦厚度比例對氧氣靈敏度之影響,並以365nm之紫外光為光源,研究光觸媒效應對提升薄膜氧氣靈敏度之影響。由實驗結果發現,光觸媒效應確實能有效提升SnO2/TiO2薄膜之氧氣靈敏度,感測氧氣濃度為100-2000ppm。由實驗結果可知,sample A到sample D (二氧化錫/二氧化鈦厚度比例為250/50 nm 到二氧化錫/二氧化鈦厚度比例為100/200 nm)之氧氣靈敏度有隨TiO2厚度比例增加而增加的趨勢。到sample D (二氧化錫/二氧化鈦厚度比例為100/200 nm)時,氧氣靈敏度達到最大值,但當TiO2厚度比例增加到sample E (二氧化錫/二氧化鈦厚度比例為50/250 nm)時便開始下降。退火試片也比未退火試片具有更高的氧氣靈敏度。未退火試片之氧氣靈敏度在照光前後由0.99-5.7提升到1.00-8.23,而退火試片之氧氣靈敏度在照光前後也由1.58-10.21提升到2.22-12.68。將SnO2/TiO2薄膜分別濺鍍於SiO2/Si 及Corning glass 1737時,發現SnO2/TiO2薄膜(鍍於SiO2/Si基板)比SnO2/TiO2薄膜(鍍於Corning glass 1737基板)具更高的氧氣靈敏度。

    Tin oxide (SnO2) has been known as a excellent gas sensor material because of its high stability and high sensitivity. In this study, an RF sputtering process was employed to fabricate the SnO2 thin films and SnO2/TiO2 double-layer films for sensing ethanol (C2H5OH) and oxygen (O2), respectively. The aim of the first part is to find the effects of oxygen flow rate during manufacturing on the sensitivity of SnO2 (Tin Oxide) thin films to ethanol. A target composed of SnO2 doped with 1 at﹪Li was used with a working pressure of 3 mtorr. The RF power was fixed at 150 Watts. The reaction gas was a mixture of argon and oxygen. The total flow rate was constant at 50 sccm with the O2/Ar ratio varying from 0.2 to 0.8. An annealing heat treatment was employed at 400℃ for 1 hour to stabilize the properties of the films. The sensitivity of the film to ethanol was tested by placing the micro-reactor device on a hot plate, heated to 300 ℃, and measuring the variation of electrical resistivity of the film with and without the presence of ethanol. The results show that the ethanol sensitivity decreased with O2/Ar flow ratio increased from 0.2 to 0.8. The ethanol sensitivity of as-deposited films is about 126 to 53 and the ethanol sensitivity of post-deposited films is around 104 to 27 when O2/Ar flow ratio increased from 0.2 to 0.8. The results also show that an O2/Ar flow ratio of 0.2 produces films with the highest ethanol sensitivity.

    In the second part, we investigate the effect of photocatalysis on the sensitivity of oxygen sensors constructed with SnO2/TiO2 thin films. An R.F. magnetron sputtering system is employed to fabricate SnO2/TiO2 double-layer films. The thin films are deposited with SnO2/TiO2 thickness ratios of 250/50, 200/100, 150/150, 100/200, and 50/250 nm, respectively. During deposition, the Ar: O2 flow rate is fixed at 4:1. To stabilize the material properties, the films are annealed for four hours at a temperature of either 550 ℃ or 650 ℃. The increase in sensitivity of the SnO2/TiO2 thin films when irradiated by UV light with a wavelength of 365nm is investigated. The results indicate that the annealed samples have higher oxygen sensitivities than the as-deposited samples. The sensitivity of the non-annealed samples increases from 0.99-5.7 to 1.00-8.23 under UV irradiation, while the sensitivity of the annealed samples increases from 1.58-10.21 to 2.22-12.68 under UV irradiation. Therefore, it is clear that UV irradiation causes the sensitivity of the SnO2/TiO2 thin films to increase significantly. Finally, it is found that the oxygen sensitivity of the SnO2/TiO2 thin films increases as the SnO2/TiO2 ratio is reduced. The SnO2/TiO2 thickness ratio is 100/200 has the highest oxygen sensitivity. We also found that the oxygen sensitivity of SnO2/TiO2 thin films SiO2/Si is higher than that Corning glass 1737.

    目 錄 中文摘要 I ABSTRACT III 致 謝 V 目 錄 VII 圖目錄 XI 表目錄 XVI 重要英漢名詞對照表 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 第二章 理論基礎及文獻回顧 6 2.1感測器介紹 6 2.1.1電化學型 (Electrochmical sensor) 6 2.1.2電化學固態電解質型(Solid electrolyte sensor) 6 2.1.3 觸媒燃燒型(Catalytic sensor) 7 2.1.4紅外線型(Infrared sensor) 8 2.1.5金屬氧化物半導體型(Metal Oxide Semiconductor sensor) 8 2.2 感測材料介紹 9 2.2.1二氧化錫(SnO2) 9 2.2.2二氧化鈦(TiO2) 10 2.3 鍍膜技術 11 2.4感測機制 11 2.5吸附理論 13 2.5.1空乏型吸附(Depletion adsorption) 13 2.5.2積蓄型吸附(Accumulation adsorption) 13 2.6 串接微晶理論 14 2.7異質接合薄膜(Heterojunction thin films) 15 2.7.1 n-p接合薄膜 15 2.7.2 n-n接合薄膜 15 2.8光觸媒效應(Photocatalytic effect) 16 2.9氣體感測性質之改良及未來發展 18 2.9.1靈敏度(Sensitivity): 19 2.9.2選擇率(Selectivity): 19 2.9.3穩定性(Stability): 19 第三章 實驗方法及步驟 37 3.1實驗流程圖 37 3.2 實驗原料 37 3.3試片前處理 38 3.4薄膜製備 38 3.4.1 酒精感測器-二氧化錫(SnO2)薄膜 38 3.4.2 氧氣感測器-二氧化錫/二氧化鈦薄膜 39 3.5入射光源波長計算 40 3.6材料測試與分析 41 3.6.1膜厚量測 41 3.6.2 GID (Grazing Incident X-Ray Diffraction)繞射分析 41 3.6.3 FESEM(Field Emission Scanning Electric Microscopy) 41 3.6.4 AFM (Atomic Force Microscopy)分析 42 3.7氣體感測性質之量測 42 3.7.1 酒精氣體感測 42 3.7.2 氧氣氣體感測 43 第四章 結果與討論 55 4.1 SNO2薄膜酒精感測器 55 4.1.1 SnO2薄膜之微結構 55 4.1.2 O2/Ar流量比對SnO2薄膜酒精感測性質之影響 56 4.1.3 不同O2/Ar 流量比之SnO2薄膜氧空缺對酒精靈敏度之影響 57 4.2 利用光觸媒效應提升SNO2/TIO2薄膜之氧氣靈敏度 59 4.2.1 SnO2/TiO2 薄膜(鍍於SiO2/Si基板)之微結構 59 4.2.2 SnO2/TiO2 薄膜之n-n type異質接合薄膜及光激發之電子傳導機制 60 4.2.3光觸媒效應對SnO2/TiO2薄膜(鍍於SiO2/Si基板)氧氣感測性質之影響 62 4.2.4 退火及SnO2/TiO2厚度比例對SnO2/TiO2薄膜(鍍於SiO2/Si基板)氧氣感測性質之影響 64 4.3 不同基板對SNO2/TIO2薄膜材料性質及電性質之影響 65 4.3.1 SnO2/TiO2 薄膜(鍍於Corning glass 1737基板)之微結構 65 4.3.2光觸媒效應對SnO2/TiO2 薄膜(鍍於Corning glass 1737基板)之氧氣感測性質之影響 66 4.3.3不同基板之SnO2/TiO2薄膜在光觸媒效應下之氧氣感測性質比較 68 第五章 結論 103 參考資料 105 圖目錄 Fig. 2-1 Rutile structure for crystalline SnO2 25 Fig. 2-2 Anatase metastable phase for crystalline TiO2 26 Fig. 2-3 A schematic illustration of the sensing mechanism of tin oxide thin films exposed to air 27 Fig. 2-4 A schematic illustration of the sensing mechanism of tin oxide thin films exposed to reducing gases such as C2H5OH 28 Fig. 2-5 Illustration of depletion adsorption in n-type semiconductors. Energy band of n-type semiconductors (a) before and (b) after contact with oxidizing gases 29 Fig. 2-6 Illustration of accumulation adsorption in n-type semiconductors. Energy band of n-type semiconductors (a) before and (b) after contact with reducing gases 30 Fig. 2-7 Illustration of grain size effect mode 31 Fig. 2-8 Schematic representation of a porous sensing layer with geometry and energy band 32 Fig. 2-9 Illustration of electron transfer for p-n junction. Energy band of n-type semiconductors (a) before and (b) after contact with p-type semiconductors 33 Fig. 2-10 Illustration of how the self-cleaning glass works 34 Fig. 2-11 Illustration of oxidation-reduction reaction of photocatalyst material. 35 Fig. 2-12 Illustration of photogeneration of holes and electrons by irradiating UV light. 36 Fig. 3-1 Experiment flow chart 47 Fig. 3-2 Flow chart of the substrate cleansing procedure 48 Fig. 3-3 Structure of the SnO2 thin-film gas sensor. (a)Cross section and (b) top view of the device. 49 Fig. 3-4 Structure of SnO2/ TiO2 thin-film gas sensor. (a) Cross-section, and (b) Top view. 50 Fig. 3-5 A schematic illustration of the ethanol sensitivity measurement system 51 Fig. 3-6 Schematic illustration of sensitivity measurement system 52 Fig. 3-7 Photo of electrical measurement system. 53 Fig. 3-8 Typical dynamic response of resistance during testing cycle. 54 Fig.4-1 GID pattern of SnO2 films deposited under O2/Ar flow ratios of 0.2, 0.4, 0.6, and 0.8. 72 Fig. 4-2 FESEM pictures of as-deposited SnO2 films. Deposited under O2/Ar flow ratios of (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8. 73 Fig. 4-3 FESEM pictures of post-annealing SnO2 films at 400℃ for one hour. Deposited under O2/Ar flow ratios of (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8. 74 Fig.4-4 The column diagram of the relationships between different O2/Ar flow ratios and nodule sizes of as-deposited SnO2 films and post-annealing SnO2 films. 75 Fig. 4-5 The relationships among different O2/Ar flow ratios, grain sizes and sensitivity of (a) as-deposited SnO2 films and (b) post-annealing SnO2 films. 76 Fig.4-6 Effects of O2/Ar flow ratio on the sensitivity of the SnO2 films as deposited and annealed at 400℃ for one hour. 77 Fig. 4-7 GID patterns of as-deposited and annealed SnO2/TiO2 thin films (SiO2/Si substrate). (a) as-deposited film, (b) film annealed at 550℃, and (c) film annealed at 650℃. 78 Fig. 4-8 FESEM images of as-deposited SnO2/TiO2 thin films (SiO2/Si substrate) under SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 79 Fig.4-9 FESEM images of annealed deposited (annealed at 550℃) SnO2/TiO2 thin films (SiO2/Si substrate) under SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 80 Fig. 4-10 FESEM images of annealed deposited (annealed at 650℃) SnO2/TiO2 thin films (SiO2/Si substrate) under SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 81 Fig.4-11 Relationship between thickness ratio and nodule size for as-deposited and annealed SnO2/TiO2 thin films. 82 Fig.4-12 EDS spectrum of SnO2/TiO2 thin films (SiO2/Si substrate). 83 Fig.4-13 Illustration of electron transfe (a) Energy band before SnO2 and TiO2 combined. (b) Energy band after SnO2 and TiO2 combined [77]. (c) Energy band under UV light irradiation. 85 Fig.4-14 Gas sensitivity in different oxygen concentrations with and without UV light irradiation of films deposited with different SnO2 /TiO2thickness ratios of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 87 Fig.4-15 Gas sensitivity in different oxygen concentrations with UV light irradiation of films deposited with different SnO2/TiO2 thickness ratios. 88 Fig.4-16 Resistance of as-deposited and annealed SnO2/TiO2 thin films in pure air. 89 Fig.4-17 GID patterns of as-deposited and post-deposited SnO2/TiO2 thin films (Corning glass 1737 substrate). (a) as-deposited film, (b) film annealed at 550℃, and (c) film annealed at 650℃. 90 Fig.4-18 FESEM images of as-deposited SnO2/TiO2 thin films (Corning glass 1737 substrate) under SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 91 Fig.4-19 FESEM images of post-deposited (annealed at 550℃) SnO2/TiO2 thin films (Corning glass 1737 substrate) under SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 92 Fig. 4-20 FESEM images of post-deposited (annealed at 650℃) SnO2/TiO2 thin films (Corning glass 1737 substrate) under SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 93 Fig.4-21 Relationship between thickness ratio and nodule size for as-deposited and annealed SnO2/TiO2 thin films (Corning glass 1737 substrate). 94 Fig.4-22 Gas sensitivity in different oxygen concentrations with and without UV light irradiation of films deposited with different SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 96 Fig. 4-23 Gas sensitivity of SnO2/TiO2 films on SiO2/Si and Corning glass 1737 substrates, respectively, in different oxygen concentrations with UV light irradiation. 97 Fig. 4-24 Relationship between thickness ratio and nodule size for SnO2/TiO2 thin films on SiO2/Si and Corning glass 1737 substrates. 98 Fig. 4-25 AFM surface morphology of annealed SnO2/TiO2 thin films (SiO2/Si substrate) under SnO2/TiO2 thin film thickness of 100 Fig. 4-26 AFM surface morphology of annealed SnO2/TiO2 thin films (Corning glass 1737 substrate) under SnO2/TiO2 thin film thickness of (a) 250 nm/50nm, (b) 200 nm/100nm, (c) 150 nm/150nm, (d) 100 nm/200nm and (e) 50 nm/250nm. 102 表目錄 Table 1-1 Explosion range of flammable gases 4 Table 1-2 TLV of toxic gases 5 Table 2-1 History of gas sensor 20 Table 2-2 Principle and feature for gas sensors 21 Table 2-3 Properties of SnO2 23 Table 2-4 Properties of TiO2 24 Table 3-1 SnO2/TiO2 The thicknesses of the SnO2/TiO2 double layer films 46 Table 4-1 Oxygen sensitivity of SnO2/TiO2 thin films (SnO2/TiO2 thickness ratio is 100/200nm) on different substrates 70 Table 4-2 AFM surface parameter statistics (SnO2/TiO2 thickness ratios : 250/50-50/250nm) 71

    [1] S.K. Song, J.S. Cho, W.K. Choi, H.J. Jung, D.S. Choi, J.Y. Lee, H.K. Baik,S.K. Koh, “Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition”, Sensors and Actuators B 46 (1998) 42-49.
    [2] D.S. Lee, C.H. Shim, J. W. Lim, J.S. Huh, D.D. Lee, Y.T. Kim, “A microsensor array with porous tin oxide thin films and microhotplate dangled by wires in air”, Sensors and Actuators B 83 (2002) 250-255.
    [3] W. Hellmich, Chr. Bosch-v. Braunmuhl, G. Muller, G. Sberveglieri, M. Berti, C. Perego, “The kinetics of formation of gas-sensitive RGTO-SnO2 films”, Thin Solid Films 263 (1995) 231-237.
    [4] 蔡嬪嬪, 曾明漢, 氣體感測器之簡介,應用市場, 材料與社會,68期(1992) 50-61.
    [5] 張建東, 侷限空間環境感測器無線警報系統之設計與評估, 朝陽科技大學, 工業工程與管理學系, 碩士論文 (2004).
    [6] C.C. Wu, M.H. Chen, C.H. Luo, G.B. Lee, “Design and fabrication issue on micromachined oxygen sensors for miniaturized energy consumption measurement systems”, Sensors and Materials, 15(7) (2003) 341-360.
    [7] P.B. Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemsiorption and catalysis”, Journal of Chemical Physics, 21 (9) (1953) 1531-1538.
    [8] K. Ihokura: The Stannic Oxide Gas Sensor-Principles and Applications, CRC press, TOKYO (1994).
    [9] M.D. Giulio, G.Micocci, A.Serra, A. Tepore, R. Rella, P. Siciliano, “SnO2 thin films for gas sensor prepared by r.f. reactive sputtering”, Sensors and Actuators B 24-25 (1995) 465-468.
    [10] G.J. L i, S. Kawi, “High-surface-area SnO2: A novel semiconductor- oxide gas sensor”, Materials Letters 34 (1998) 99-102.
    [11] K. C. Song, Y. Kang, “Preparation of high surface area tin oxide powders by a homogeneous precipitation method”, Materials Letters 42 (2000) 283-289.
    [12] G. Sakai, N.S. Baik, N. Miura, N. Yamazoe, “Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness”, Sensors and Actuators B 77 (2001) 116-121.
    [13] Th. Becker, S. Ahlers, Chr. Bosch-v. Braunmuhl, G. Muller, O. Kiesewetter, “Gas sensing properties of thin- and thick-film tin-oxide materials”, Sensors and Actuators B 77 (2001) 55-61.
    [14] Z. Tang, P. C.H. Chan, R. K. Sharma, G. Yan, I-Ming Hsing and J. K. O. Sin, “Investigation and control of microcracks in tin oxide gas sensing thin-films”, Sensors and Actuators B 79 (2001) 39-47.
    [15] M.H. Yeh, W.S. Hwang, G.B. Lee and Y.M. Lu, “Characterization of SnO2/TiO2 double layer films as alcohol sensing materials ”, Materials Transactions, JIM 45 (2004) 3318-3323.
    [16] 林鴻明, 曾世杰, 奈米半導體材料之特殊氣體感測性質, 工業材料, 157期 (2000) 163-169.
    [17] Gas sensors: Principle, operation and developments, edited by G. Sberveglieri Kluwer Academic Publishers, Netherlands (1992) 89-186.
    [18] 瀨昇, 小林哲二: 感測器原理與應用技術, 全華(1986) 144-153.
    [19] M. Chelvayohan, Patented Virtual ReferenceTM Infrared Gas Sensor, Sensor design engineer Texas Instruments, Inc. 1999.
    [20] J. Fraden: Handbook of modern sensors, Springer, 3-rd ed., USA (2004).
    [21] 黃克定: 感測器及周邊電路, 文笙 (1990) 第7章.
    [22] A. Dieguez, A. Romano-Rodriguez, J.R. Morante, U. Weimar, M. Schweizer-Berberich and W. Gopel, “Morphological analysis of nanocrystalline SnO2 for gas sensor applications”, Sensors and Actuators B 31 (1996) 1-8.
    [23] T. Seiyama, “A new detector for gaseous components using semiconductive thin films”, Analytical Chemistry 34 (1962) 1502-1503.
    [24] H.P.Kim, J.J. Choi, H.W. Cheong, J.M. Kim, J.M. Kim, “Sensing mechanism of SnO2-based sensors for alcohols”, Sensors and Actuators B 13-14 (1993) 511-512.
    [25] H. Meixner, U. Lampe, “Metal oxide sensors”, Sensors and Actuators B 33 (1996) 198-202.
    [26] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors”, Sensors and Actuators B 23 (1995) 103-109.
    [27] W. S. Hu., Z. G. Liu, Z. C. Wu, D. Feng, “Comparative study of laser ablation techniques for fabricating nanocrystalline SnO2 thin films for sensors”, Materials Letters 28 (1996) 369-372.
    [28] T. Hiroshi: 光觸媒圖解, 商周出版 (2003) 1-48.
    [29] J. Hildenbrand: Simulation and characterisation of a micromachined gas sensor and preparation for model order reduction, institute for microsystem technology, Albert Ludwig University, Freiburg Germany (2003).
    [30] JCPDS, 41-1445(1997).
    [31] M. Cratzel (Ed.): Energy resources through photochemistry and catalysis, Academic Press, New York (1983).
    [32] R.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R.J. Tilley, “A Structural Investigation of Titanium Dioxide Photocatalysts”, Journal of Solid State Chemistry 92 (1991) 178-190.
    [33] JCPDS, 21-1272 (1997).
    [34] L. Shi, C. Li, H.C. Gu and D. Fang, “Morphology and properties of ultrafine SnO2–TiO2 coupled semiconductor particles”, Materials Chemistry and Physics 62 (2000) 62-67.
    [35] K. Li, Galatsis, W. Wlodarski, M. Passacantando, S. Santucci, P. Siciliano and M. Catalano, “Microstructural characterization of MoO3–TiO2 nanocomposite thin films for gas sensing”, Sensors and Actuators B 77 (2001) 27-34.
    [36] Y. Shimizu, N. Kuwano, T. Hyodo and M. Egashira, “High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd”, Sensors and Actuators B 83 (2002) 195-201.
    [37] J. S. Hsieh: Solar energy engineering, Prentice-Hall, USA (1986).
    [38] S.S. Park and J.D. Mackenzie, “Thickness and microstructure effects on alcohol sensing of tin oxide thin films”, Thin Solid Films 274 (1996) 154-159.
    [39] L. Promsong, M. Sriyudthsak, “Thin tin-oxide film alcohol-gas sensor”, Sensors and Actuators B 24-25 (1995) 504-506.
    [40] D.S. Lee, G.H. Rue, J.S. Huh, S.D. Choi, D.D. Lee, “Sensing characteristics of epitaxially-grown tin oxide gas sensor on sapphire substrate”,Sensors and Actuators B 77 (2001) 90-94.
    [41] W.R. Runyan and K.E. Bean: Semiconductor integrated circuit processing technology, Addison Wesley (1990).
    [42] S.M. Sze: Semiconductor sensors, John Wiley and Sons, (1994) 387-393.
    [43] H. Ohnishi, H. Saski, T. Matsumoto and M. Ippommatsu, “Sensing mechanism of SnO2 thin film gas sensors”, Sensors and Actuators B 13-14 (1993) 677-678.
    [44] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-based elements”, Sensors and Actuators B 3 (1991) 147-155.
    [45] N. Barsan, M. Schweizer-Berberich and W. Göpel, “Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report”, Fresenius’ Journal of Analytical Chemistry 365(1999)287-304.
    [46] W. Göpel, K.D.Schierbaum, “SnO2 sensors: current status and future prospects”, Sensors and Actuators B 26-27 (1995) 1-12.
    [47] G. Mangamma, V. Jayaraman, T. Gnanasekaran, G. Periaswami, “Effects of silica additions on H2S sensing properties of CuO–SnO2 sensors”, Sensors and Actuators B 53 (1998) 133–139.
    [48] Y. Nakamura, H. Yoshioka, M. Miyayama, H. Yanagida, T. Tsurutani and Y. Nakamura, “Selective CO gas sensing mechanisms with CuO/ZnO heterocontact”, Journal of the Electrochemical Society 137 (1990) 940– 943.
    [49] S.J. Jung, H. Yanagita, “The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivityfor CO gas”, Sensors and Actuators B 37 (1996) 55-60.
    [50] S.M. Sze: Physics of semiconductor, John Wiley & Sons, 2-nd ed., New York (1981) chapter 3.
    [51] A. K. Prasad, D.J. Kubinski and P. I. Gouma, “Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection”, Sensors and Actuators B 93 (2003) 25-30.
    [52] J.H. Yu, G.M. Choi, “Current voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zn2SnO4, SnO2/Zn2SnO4 layered-type sensors”, Sensors and Actuators B 72 (2001) 141-148.
    [53] Z. Ling, C. Leach, R. Freer, “NO2 sensitivity of a heterojunction sensor based on WO3 and doped SnO2”, Journal of the European Ceramic Society 23 (2003) 1881-1891.
    [54] D. A. Neamen: Semiconductor physics & devices: Basic principles, Second ed., IRRWIN (1997) 340-314.
    [55] 陳富亮: 最新奈米光觸媒應用技術, 普林斯頓 (2003) 第3章.
    [56] http://news.bbc.co.uk/2/hi/technology/3770353.stm
    [57] S.R. Morrison: Electrochemistry at metal and semiconductor electrodes, Plenum, New York (1980).
    [58] M. Gratzel: Energy resources through photochemistry and catalysis, ACADEMIC PRESS, New York (1983).
    [59] A. i Cobos, Jordi, “Metal additive distribution in TiO2 and SnO2 semiconductor gas sensor nanostructured materials”, Barcelona University, Doctoral dissertation (2001).
    [60] G. Zhang and M. Liu, “Effect of particle size and dopant on properties of SnO2-based gas sensors”, Sensors and Actuators B 69 (2000) 144-152.
    [61] C. Nayral, T. Ould-Ely, A. Maisonnat, B. Chaudret, P. Fau, L. Lescouzeres and A. Peyre-Lavigne, “A Novel Mechanism for the Synthesis of Tin / Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors”, Advanced Materials 11 (1 ) (1999) 61-63.
    [62] G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli and C. Perego, ” Oxygen gas sensing properties of undoped and Li-doped SnO2 thin films”, Sensors and Actuators B 13-14 (1993) 117-120.
    [63] D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, “The effect of film oxygen content on SnOx gas-sensor selectivity”, Sensors and Actuators B 24-25 (1995) 883-885.
    [64] A. Beiser: Concepts of modern physics, Fifth ed., Mc Graw Hill (1995) 48-89.
    [65] L. Miao, S. Tanemura, Y. Kondo, M. Iwata, S. Toh and K. Kaneko, “Microstructure and bactericidal ability of photocatalytic TiO2 thin films prepared by rf helicon magnetron sputtering”, Applied Surface Science 238 (2004) 125-131.
    [66] V.V. Kissine, S.A. Voroshilov, V.V. Sysoec, “Oxygen flow effect on gas sensitivity properties of tin oxide film prepared by r.f. sputtering”, Sensors and Actuators B 55 (1999) 55-59.
    [67] D. L. Costello, B.P.J., Ewen, R.J., Guernion, N., Ratcliffe, N.M., “Highly sensitive mixed oxide sensors for the detection of ethanol”, Sensors and Actuators B 87 (2002) 207-210.
    [68] L. Gajdosik, “The derivation of the electrical conductance/ concentration dependency for SnO2 gas sensor for ethanol”, Sensors and Actuators B 81 (2002) 347-350.
    [69] S.R. Morrison, “Selectivity in semiconductor gas sensors”, Sensors and Actuators B 12 (1987) 425-440.
    [70] R.H., Robert E.: Physical metallurgy principle, 3rd ed., PWS publishing company (1991) 190-192.
    [71] H. Ogawa, M. Nishikawa, A. Abe, “Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films”, Journal of Applied Physics 53 (6) (1982) 4448-4455.
    [72] J. Gerblinger, U. Lampe, H. Meixner, “Sensitivity mechanism of metal oxides to oxygen detected by means of kinetic studies at high temperatures”, Sensors and Actuators B 24-25 (1995) 639-642.
    [73] A.D. Brailsford, M. Yussouff, E.M. Logothetis, “Theory of gas sensors”, Sensors and Actuators B 13-14 (1993) 135-138.
    [74] N. Kanai, T.Nuida, K. Ueta, K. Hashimoto, T. Watanabe and H. Ohsaki, “Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering”, Vacuum 74 (2004) 723-727.
    [75] J. Yang, D. Li, X. Eang, X.J. Yang, and L.D. Lu, “Rapid Synthesis of Nanocrystalline TiO2/SnO2 Binary Oxides and Their Photoinduced Decomposition of Methyl Orange”, Journal of Solid State Chemistry 165 (2002) 193-198.
    [76] J. Shang, W. Yao, Y. Zhu, N. Wu, “Structure and photocatalytic performances of glass/ SnO2/TiO2 interface composite film”, Applied Catalysis A 257 (2004) 25-32.
    [77] H. Tada, A. Hattori, Y.i Tokihisa, K. Imai, N. Tohge and S. Ito, “A patterned TiO2/SnO2 bilayer type photocatalytic”, Journal of Physical Chemistry 104 (2000) 4585-4587.
    [78] W.P. Tai, “Photoelectrochemical properties of SnO2/TiO2 coupled electrode sensitized by a mercurochrome dye”, Materials Letters 51 (2001) 451-454.
    [79] W.P. Tai, “Photoelectrochemical properties of ruthenium dye- sensitized nanocrystalline SnO2:TiO2 solar cells”, Solar Energy Materials and Solar Cells 76 (2003) 65-73.
    [80] W.P. Tai, K. Inoue, J.H. Oh, “Ruthenium dye- sensitized SnO2/TiO2 coupled solar cells”, Solar Energy Materials and Solar Cells 71 (2002) 553-557.
    [81] C. Nasr, S. Hotchandani, W. Y. Kim, R.H. Schmehl, P.V. Kamat, “Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of SnO2/CdS Coupled Nanocrystallites with a Ruthenium Polypyridyl Complex”, Journal of Physical Chemistry B 101 (1997) 7480-7487.
    [82] K. Chhor, J.F. Bocquet and C. Colbeau-Justin, “Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen”, Materials Chemistry and Physics 86 (2004) 123-131.
    [83] D. A. Neaman: Semiconductor physics and devices, 2nd ed., IRWIN (1997) 167-298.
    [84] Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells ”, Chemistry of Materials 14 (2002) 2527-2535.
    [85] D.F. Cox, T.B. Fryberger and S. Semancik, “Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface”, Physical Review B 38 (1988) 2072-2083.
    [86] E. Wahlstrom, E.K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Lagsgaard, I. Stensgaard and F. Besenbacher, “Electron Transfer– Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface”, Science 303 (2004) 511-513.
    [87] N. Bârsan, “Conduction Models in Gas-Sensing SnO2 Layers: Grain-size effects and ambient atmosphere influence”, Sensors and Actuators B 17 (1994) 241-246
    [88] M. Gillet, C. Lemire, E. Gillet, K. Aguir, “The role of surface oxygen vacancies upon WO3 conductivity”, Surface Science 523-535 (2003) 519-525.
    [89] H. Norenberg, G.A.D. Briggs, “Defect formation on CeO2 (111) surfaces after annealing studied by STM”, Surface Science 424 (1999) L352-L355.
    [90] H. Nörenberg and G.A.D. Briggs, “Defect Structure of Nonstoichiometric CeO2 (111) Surfaces Studied by Scanning Tunneling Microscopy”, Physical Review Letters 79 (1997) 4222-4225.
    [91] C. Cantalini, M. Pelino, H.T. Sun, M. Faccio, S. Santucci, L. Lozzi, M. Passaxantando, “Cross sensitivity and stability of NO2 sensors from WO3 thin film”, Sensors and Actuators B 35 (1996) 112-118.
    [92] B.K. Min, S.D. Choi, “Undoped and 0.1wt.% Ca-doped Pt-catalyzed SnO2 sensors for CH4 detection”, Sensors and Actuators B 108 (2005) 119-124.
    [93] B.K. Min, S.D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition”, Sensors and Actuators B 98 (2004) 239-246.

    下載圖示 校內:2009-07-17公開
    校外:2011-07-17公開
    QR CODE