簡易檢索 / 詳目顯示

研究生: 劉冠宏
Liou, Guan-Hong
論文名稱: 智慧型控制策略於機器手臂抓取與置放水杯之設計與實現
Design and Implementation of Intelligent Control Strategy for Robot Arm Picking and Placing Cups with Water
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 機器手臂適應性慣性權重與加速度係數粒子群演算法速度控制
外文關鍵詞: Robot arm, AIWCPSO, velocity control
相關次數: 點閱:174下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在設計與實現機器手臂抓取、移動及置放水杯之智慧型控制策略。首先,介紹本論文所研製之五自由度機器手臂,並詳述其機構設計概念及其控制系統架構。此外,機器手臂之順向運動學與逆向運動學推導也詳述於文中。實驗過程中機械手臂必須於固定時間內抓取並移動裝了近乎全滿之水杯,若速度曲線規劃不佳導致夾爪姿勢無法維持水平姿態,或是加速度過大,杯中的液體將會溢出。為了解決上述問題,本論文使用加速度計及陀螺儀以精確得知機器手臂在移動中之加速度以及夾爪姿態等資訊,再將其讀值回傳電腦,並由智慧型控制策略進行學習。智慧型控制策略使用之演算法為適應性慣性權重與加速度係數粒子群演算法(AIWCPSO),經歷多次學習之後,機械手臂即能規劃出每顆關節點之馬達速度曲線,並將此速度曲線套用於機器手臂,使其夾爪維持水平姿勢不過度傾斜或加速度過大,讓水免於溢出水杯。最後,經由三個不同路徑進行置放水杯實驗,證實智慧型控制策略應用於機器手臂之速度規劃是具體可行性的。

    This thesis proposes an intelligent control strategy such that a robot arm is capable of picking and placing cups without spilling out the contained water. First, the system architecture of a 5-DOF robot arm and its design concept of mechanism are introduced. Second, both the forward and inverse kinematics of the robot arm are derived. By the setup of experiment, the designed and implemented robot arm will grasp a cup of water and move it to another place. However, if the acceleration or the orientation of the robot arm are inappropriate, water in the cup may be spilt out during the movement. Therefore, the inertial measurement unit (IMU) is used for obtaining the related information. According to the obtained information, the velocity curves of each joint can be optimized by Adaptive Inertia Weight and Acceleration Coefficients Particle Swarm Optimization (AIWCPSO). Finally, the experimental results demonstrate the feasibility and effectiveness of the proposed method.

    中文摘要 I 英文摘要 II 致謝 VIII 目錄 IX 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第二章 機器手臂硬體以及軟體介面介紹 5 2.1 簡介 5 2.2 機器手臂之配置 6 2.2.1 機器手臂機構 6 2.2.2 控制系統 10 2.3 硬體介紹 11 2.3.1 材料 11 2.3.2 伺服馬達 14 2.3.3 x-IMU 16 2.3.4 電腦 18 2.3.5 供電系統 20 2.3.6 軸承 21 2.4 軟體介面介紹 23 2.5 簡結 26 第三章 運動學與粒子群體最佳化演算法 27 3.1 簡介 27 3.2 運動學 28 3.2.1 順向運動學 28 3.2.2 逆向運動學 32 3.3 粒子群體最佳化演算法 38 3.3.1粒子群體最佳化演算法 38 3.3.2 Adaptive Inertia Weight and Acceleration Coefficients Particle Swarm Optimization 40 3.5簡結 43 第四章 實驗結果 44 4.1 簡介 44 4.2 實驗環境 45 4.3 實驗流程 46 4.4 速度曲線設計 47 4.5 AIWCPSO參數設計 49 4.6 水杯抓取移動之應用 50 4.6.1 路徑一 51 4.6.2 路徑二 55 4.6.3 路徑三 58 4.6.4 水杯移動之應用 62 4.7簡結 64 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 66 參考文獻 68 Biography 71

    [1] RIBA, http:// rtc.nagoya.riken.jp/RIBA/index-e.html
    [2] RIKEN, http:// rtc.nagoya.riken.jp/index-e.html
    [3] Logitech Webcams,
    http://www.davincisurgery.com/da-vinci-surgery/da-vinci-surgical-system/
    [4] Moley Robotics, http://www.moley.com/
    [5] Unimate, https://en.wikipedia.org/wiki/Unimate/
    [6] KUKA, http://www.kuka-robotics.com/
    [7] FANUC, http://www.fanuc.eu/ /
    [8] ABB, http://new.abb.com/
    [9] YASKAWA, https://www.yaskawa.com/
    [10] OTC, http://www.daihen-usa.com/
    [11] International Federation of Robotics, http://www.ifr.org/
    [12] Industrial Robot Statistics (IFR), http://www.ifr.org/industrial-robots/statistics/
    [13] T.-H. S. Li, C.-J. Lin, P.-H. Kuo, and Y.-H. Wang, “Grasping posture control design for a home service robot using an ABC-based adaptive PSO algorithm,” International Journal of Advanced Robotic Systems, vol. 13, DOI: 10.5772/64044, 2016.
    [14] x-IMU, http://www.x-io.co.uk/products/x-imu/
    [15] C. Rocha, C. Tonetto and A. Dias, “A comparison between the Denavit–Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators,” Robotics and Computer-Integrated Manufacturing, vol. 27, no. 4, pp. 723-728, 2011.
    [16] A. K. Kovalchuk, “Designing drives of a medical robot actuator,” Life Science Journal, vol. 11, no. 11, pp. 337-340, 2014.
    [17] V. Deshpande and P. M. George, “Kinematic modelling and analysis of 5 DOF robotic arm,” International Journal of Robotics Research and Development, vol. 4, no. 2, pp. 17-24, 2014.
    [18] R. Islam, J. Iqbal, and Q. Khan, “Design and comparison of two control strategies for multi-DOF articulated robotic arm manipulator,” Journal of Control Engineering and Applied Informatics, vol. 16, no. 2, pp. 28-39, 2014.
    [19] 6061 aluminum alloys,
    https://zh.wikipedia.org/wiki/6061%E9%93%9D%E5%90%88%E9%87%91
    [20] 7075 aluminum alloys,
    https://zh.wikipedia.org/wiki/7075%E9%8B%81%E5%90%88%E9%87%91
    [21] Fiber-reinforced plastic,
    https://zh.wikipedia.org/wiki/%E7%8E%BB%E7%92%83%E9%92%A2
    [22] SolidWorks, http://www.solidworks.com/
    [23] TOSHIBA Portege R830,
    http://www.grainew.com.tw/p1-nb-detail.asp?Pkey=aBXHaB32aBRPaB30aBVWaB37/
    [24] Robotis, http://en.robotis.com/index/
    [25] X-IO, http://www.x-io.co.uk/
    [26] Tektronix, http://tw.tek.com/
    [27] Jo-ta, http://www.jota-bearing.com.tw/message_show.php?page=company_info
    [28] Misumi, http://tw.misumi-ec.com/vona2/mech/
    [29] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. of the sixth international symposium on micro machine and human science, vol. 1, 1995.
    [30] J. Kennedy, “Particle swarm optimization,” Encyclopedia of machine learning, pp.760-766, 2011.
    [31] C. G. Lee, “Robot arm kinematics, dynamics, and control,” Computer, vol. 15, no. 12, pp. 62-80, 1982.
    [32] J. M. Hollerbach, “Optimum kinematic design for a seven degree of freedom manipulator,” Robotics Research: The second international symposium, Cambridge, MIT Press, pp. 215-222, 1985.
    [33] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators, Springer Science & Business Media, 2012.
    [34] J.-W. Li, Y.-M. Cheng, and K.-Z. Chen, “Chaotic particle swarm optimization algorithm based on adaptive inertia weight,” The 26th Chinese Control and Decision Conference, pp. 1310-1315, 2014.
    [35] X. L. Wang, Y. Yang, Q. Zeng, and J. Q. Wang, “Particle swarm optimization with adaptive inertia weight and its application in optimization design,” Advanced Materials Research, vol. 97-101, pp. 3484-3488,, 2010.
    [36] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. IEEE World Congress on Evolutionary Computation, pp. 69-73, 1998.
    [37] R.C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” in Proc. 2001 Evolutionary Computation, vol. 1, pp. 94-100, 2001.
    [38] B. K. Panigrahi, V. R. Pandi, and S. Das, “Adaptive particle swarm optimization approach for static and dynamic economic load dispatch,” Energy Conversion and Management, vol. 49, no. 6, pp. 1407-1415, 2008.
    [39] Y. L. Zheng, L. H. Ma, L. Y. Zheng, and J. X. Qiuan, “Empirical study of particle swarm optimizer with an increasing inertia weight,” in Proc. of 2003 IEEE Conference on Evolutionary Computation, vol. 1, pp. 221-226, 2003.
    [40] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” in International Conference on Evolutionary Programming, pp. 611-616, 1998.
    [41] C. Dong, G. Wang, Z. Chen, and Z. Yu, “A method of self-adaptive inertia weight for PSO,” in Proc. of 2008 Computer Science and Software Engineering, vol. 1, pp. 1195-1198, 2008.

    下載圖示 校內:2021-08-31公開
    校外:2022-08-31公開
    QR CODE