| 研究生: |
李旻舫 Li, Min-Fang |
|---|---|
| 論文名稱: |
雙向互連轉換器於孤島混合交流/直流微電網之頻率控制策略 Frequency Control Strategy of Bidirectional Interlinking Converters in Islanded Hybrid AC/DC Microgrids |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 風力發電系統 、太陽能發電系統 、儲能系統 、虛擬慣性 、全釩氧化還原液流電池 、雙向互連轉換器 、頻率控制 |
| 外文關鍵詞: | Wind power-generation system, photovoltaic power-generation system, energy-storage system, virtual inertia, vanadium redox flow battery, bidirectional interlinking converter, frequency control |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出用於含有再生能源發電系統及儲能系統之混合交流/直流微電網之雙向虛擬慣性控制策略,該孤島模式運轉之微電網係由風力發電系統、太陽能發電系統、雙向直流對直流轉換器以及雙向互連轉換器等設備組成,以全釩氧化還原液流電池為基礎之儲能系統經由雙向直流對直流轉換器連接至直流微電網,該直流微電網則透過雙向互連轉換器與交流微電網連接。本論文在虛擬同步機的基礎上,使用基於雙向互連轉換器之雙向虛擬慣性控制策略,分別完成直流與交流微電網之功率分配、抑制直流鏈電壓及交流側頻率之偏差量,並比較該系統於加入虛擬慣性控制前後之差異。本論文分別完成該系統架構在不同工作條件下之穩態頻域分析,並完成該系統架構在不同干擾條件下之動態與暫態時域模擬。
This thesis proposes a bidirectional virtual inertial control strategy for a hybrid AC/DC microgrid including a renewable-energy power-generation system and an energy-storage system. The studied hybrid AC/DC microgrid consists of a wind power-generation system, a photovoltaic power-generation system, a bidirectional DC-DC converter, and a bidirectional interlinking converter (BIC). The energy-storage system based on vanadium redox flow battery is connected to the DC microgrid through a bidirectional DC-DC converter, while the DC microgrid is connected to the AC microgrid through the BIC. On the basis of the virtual synchronous generator, this thesis uses the bidirectional virtual inertial control strategy based on BIC to achieve power distribution between the DC and AC microgrids, suppress the deviations of both DC-link voltage and frequency of the AC side, and compare the differences for the studied system with and without the virtual inertial control. The thesis performs the steady-state frequency-domain analysis of the studied system under different operating conditions. Both dynamic and transient time-domain simulations of the studied system under various disturbance conditions are also carried out.
[1] H. Bevrani, T. Ise, and Y. Miura, “Virtual synchronous generators: A survey and new perspectives,” Electrical Power and Energy Systems, vol. 54, pp. 244-254, Jan. 2014.
[2] M. P. N. van Wesenbeeck, S. W. H. de Haan, P. Varela, and K. Visscher, “Grid tied converter with virtual kinetic storage,” in Proc. 2009 IEEE Bucharest PowerTech, Bucharest, Romania, Jun. 28 - Jul. 2, 2009, pp. 1-7.
[3] S. D’Arco, J. A. Suul, and O. B. Fosso, “A virtual synchronous machine implementation for distributed control of power converters in smartgrids,” Electrical Power and Energy Systems, vol. 122, pp. 180-197, May 2015.
[4] P. F. Frack, P. E. Mercado, M. G. Molina, E. H. Watanabe, R. W. De Doncker, and H. Stagge, “Control strategy for frequency control in autonomous microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 1046-1055, Dec. 2015.
[5] J. Liu, Y. Miura, and T. Ise, “Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators,” IEEE Trans. Power Electronics, vol. 31, no. 5, pp. 3600-3611, May 2016.
[6] J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268-2277, Sep. 2017.
[7] J. Alipoor, Y. Miura, and T. Ise, “Power system stabilization using virtual synchronous generator with alternating moment of inertia,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451-458, Jun. 2015.
[8] C. Andalib-Bin-Karim, X. Liang, and H. Zhang, “Fuzzy-secondary-controller-based virtual synchronous generator control scheme for interfacing inverters of renewable distributed generation in microgrids,” IEEE Trans. Industry Applications, vol. 54, no. 2, pp. 1047-1061, Mar./Apr. 2015.
[9] G. Melath, S. Rangarajan, and V. Agarwal, “A novel control scheme for enhancing the transient performance of an islanded hybrid AC-DC microgrid,” IEEE Trans. Power Electronics, vol. 34, no. 10, pp. 9644-9654, Oct. 2019.
[10] J. Li, B. Wen, and H. Wang, “Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy,” IEEE Access, vol. 7, pp. 39509-39514, Mar. 2019.
[11] A. Fathi, Q. Shafiee, and H. Bevrani, “Robust frequency control of microgrids using an extended virtual synchronous generator,” IEEE Trans. Power Systems, vol. 33, no. 6, pp. 6289-6297, Nov. 2018.
[12] M. Li, W. Huang, N. Tai, L. Yang, D. Duan, and Z. Ma, “A dual-adaptivity inertia control strategy for virtual synchronous generator,” IEEE Trans. Power Systems, vol. 35, no. 1, pp. 594-604, Jan. 2020.
[13] K. Jiang, H. Su, H. Lin, K. He, H. Zeng, and Y. Che, “A practical secondary frequency control strategy for virtual synchronous generator,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2734-2736, May 2020.
[14] H. Xu, C. Yu, C. Liu, Q. Wang, and X. Zhang, “An improved virtual inertia algorithm of virtual synchronous generator,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 2, pp. 377-386, Mar. 2020.
[15] B. Long, Y. Liao, K. T. Chong, J. Rodríguez, and J. M. Guerrero, “MPC-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 953-964, Mar. 2021.
[16] F. Yao, J. Zhao, X. Li, L. Mao, and K. Qu, “RBF neural network based virtual synchronous generator control with improved frequency stability,” IEEE Trans. Industrial Informatics, vol. 17, no. 6, pp. 4014-4024, Jun. 2021.
[17] B. Long, Y. Liao, K. T. Chong, J. Rodríguez, and J. M. Guerrero, “Enhancement of frequency regulation in AC microgrid: A fuzzy-MPC controlled virtual synchronous generator,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3138-3149, Jul. 2021.
[18] B. Pournazarian, M. Safedian, M. Lehtonen, and E. Pouresmaeil, “Simultaneous optimization of virtual synchronous generators (VSG) parameters in islanded microgrids supplying induction motors,” IEEE Access, vol. 9, pp. 124972-124985, Sep. 2021.
[19] A. Rafiee, Y. Batmani, F. Ahmadi, and Hassan Bevrani, “Robust load-frequency control in islanded microgrids: Virtual synchronous generator concept and quantitative feedback theory,” IEEE Trans. Power Systems, vol. 36, no. 6, pp. 5408-5416, Nov. 2021.
[20] J. Fang, Y. Tang, H. Li, and X. Li, “A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators,” IEEE Trans. Power Electronics, vol. 33, no. 4, pp. 2820-2824, Apr. 2018.
[21] Z. Afshar, M. M. Zadeh, S. M. T. Bathaee, and G. B. Gharehpetian, “Primary and secondary frequency control of low-inertia microgrids with battery energy storage and intermittent renewable energy resources,” in Proc. 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tehran, Iran, Jun. 4-6, 2020, pp. 1-6.
[22] Z. Ma, E. Lin, H. Deng, Z. Wang, and Y. Zhu, “Bidirectional virtual inertia control strategy for interlinking converter in hybrid AC/DC microgrid,” in Proc. 2021 The 7th International Conference on Electrical Engineering, Control and Robotics (EECR 2021), Fujian, China, Jan. 21-23, 2021, pp. 1-9.
[23] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
[24] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
[25] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
[26] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I: Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
[27] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
[28] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
[29] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission & Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
[30] F. Mei, “Small-signal modelling and analysis of doubly-fed induction generators in wind power applications,” Ph.D dissertation, Imperial College London, University of London, London, UK, 2008.
[31] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” Proceeding of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
[32] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
[33] A. Ostadi, A. Yazdani, and R. K. Varma, “Modeling and stability analysis of a DFIG-based wind-power generator interfaced with a series-compensated line,” IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1504-1514, Jul. 2009.
[34] D. N. Walker, C. E. J. Bowler, R. L. Jackson, and D. A. Hodges, “Results of subsynchronous resonance test at Mohave,” IEEE Trans. Power Apparatus and Systems, vol. 94, no. 5, pp. 1878-1889, Sep. 1975.
[35] X. Qiu, T. A. Nguyen, J. D. Guggenberger, M. L. Crow, and A. C. Elmore, “A field validated model of a vanadium redox flow battery for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1592-1601, Jul. 2014.
[36] X. Qiu, M. L. Crow, and A. C. Elmore, “A balance-of-plant vanadium redox battery system model,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 557-564, Apr. 2015.
[37] C. Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery,” in Proc. 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, Singapore, Nov. 24-27, 2008, pp. 696-701.
[38] J. Chahwan, C. Abbey, and G. Joos, “VRB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. 2007 IEEE Canada Electrical Power Conference, Montreal, Quebec, Canada, Oct. 25-26, 2007, pp. 387-392.
[39] R. D‘Agostino, L. Baumann, A. Damiano, and E. Boggasch, “A vanadium-redox-flow-battery model for evaluation of distributed storage implementation in residential energy systems,” IEEE Trans. Energy Conversion, vol. 30, no. 2, pp. 421-430, Jun. 2015.
[40] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Feb. 2010.
[41] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
[42] D. Boroyevich, R. Burgos, I. Cvetkovic, and B. Wen, “Modeling and control of three-phase high-power high-frequency converters,” in Proc. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padova, Italy, Jun. 25-28, 2018, pp. 1-133.
[43] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
[44] K. M. Cheema, N. I. Chaudhary, M. F. Tahir, K. Mehmood, M. Mudassir, M. Kamran, A. H. Milyani, and K. Chaudhari, “Virtual synchronous generator: Modifications, stability assessment and future applications,” Energy Reports, vol. 8, pp. 1704-1717, Nov. 2022.
[45] W. Wu, Y. Chen, A. Luo, L. Zhou, X. Zhou, L. Yang, Y. Dong, and J. M. Guerrero, “A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines,” IEEE Trans. Industrial Electronics, vol. 64, no. 7, pp. 6005-6016, Jul. 2017.
[46] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
[47] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
[48] 高浩瑜,使用自適應類神經網路控制器於混合交流/直流微電網系統之性能改善,國立成功大學電機工程學系碩士論文,2021年6月。
[49] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1944.
[50] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
[51] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
[52] J. Sacristán, N. Goñi, A. Berrueta, J. López, J. L. Rodríguez, A. Ursúa, and P. Sanchis, “Inertial response and inertia emulation in DFIG and PMSG wind turbines: Emulating inertia from a supercapacitor-based energy storage system,” in Proc. 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Bari, Italy, Sep. 7-10, 2021, pp. 1-6.
[53] H. Bevrani, M. R. Feizi, and S. Ataee, “Robust frequency control in an islanded microgrid: H∞ and μ-synthesis approaches,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 706-717, Mar. 2016.
[54] 吳國賓、吳進忠、蔡昊廷、陳俊宇、梁佩芳,國際獨立型電力系統調頻備轉技術規範之現況與未來發展,臺灣能源期刊,第7卷,第4期,第389-404頁,2020年12月。
[55] K. Shi, W. Song, H. Ge, P. Xu, Y. Yang, and F. Blaabjerg, “Transient analysis of microgrids with parallel synchronous generators and virtual synchronous generators,” IEEE Trans. Energy Conversion, vol. 35, no. 1, pp. 95-105, Mar. 2020.
校內:2027-07-29公開