簡易檢索 / 詳目顯示

研究生: 程榮祥
Cheng, Rung-Shiang
論文名稱: 高效能TCP/IP網路的傳輸控制與封包遺失回復機制研究
A Study on Transmission Control and Loss Recovery Schemes for High Performance TCP/IP Networking
指導教授: 林輝堂
Lin, Hui-Tang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 98
外文關鍵詞: TCP, Congestion control
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Transmission Control Protocol (TCP) provides a reliable host-to-host data transfer function in many network applications and plays a crucial role in controlling congestion throughout the Internet. The performance-related issues arising in TCP-based applications stem primarily from the various interactions between the internal TCP flow control and congestion control schemes and the surrounding communication environment. However, while many attempts have been made to improve the performance of TCP, the algorithms and parameters which are suitable for one environment are generally not transferable to others, and therefore TCP must be specifically adapted to different environments. Accordingly, this thesis discusses the fundamental problems and performance limitations of the TCP transport-layer protocol in various existing and emerging network systems and proposes a number of schemes for enhancing the TCP performance. The proposed schemes are quantified in terms of their achieved effective throughputs and are benchmarked against various existing TCP schemes. The numerical results confirm that the proposed schemes greatly enhance the performance of TCP over a variety of heterogeneous network environments.

    Chapter 1 Introduction ............1 1.1 Overview ............1 1.2 Motivation ............4 1.3 Objective and Dissertation Outline ............5 Chapter 2 TCP Fundamentals ............7 2.1 TCP Services ............7 2.2 Header Format ............8 2.3 Packet Loss and Retransmission ............9 2.4 Round-Trip Estimation and Timeout Mechanism ............9 2.5 Connection Establishment and Termination ............10 2.6 Flow Control and Sliding Window ............11 2.7 Congestion Control ............12 28 Summary ............13 Chapter 3 Bandwidth Estimation Schemes for TCP over High-Speed Networks ............14 3.1 TCP Performance Issues over Large Bandwidth-Delay Networks ............14 3.2 Related Studies of Bandwidth Estimation Algorithms ............14 3.3 Proposed Bandwidth Estimation Scheme ............16 3.4 Numerical Results ............19 35 Summary ............29 Chapter 4 TCP Performance over Infrastructure-based Wireless Networks ............31 4.1 TCP Performance Issues over Wireless Networks ............31 4.2 IEEE 802.11 Background ............31 4.3 Related Studies of TCP over IEEE 802.11 Wireless Links ............33 4.3.1 Split-Connection Schemes ............33 4.3.2 Link-Layer Schemes ............34 4.3.3 End-to-end Schemes ............34 4.4 The SNACK Scheme and Proposed Error Recovery Procedure ............35 4.4.1 SNACK Basis ............35 4.4.2 Proposed Error Recovery Procedure ............37 4.4.3 Enhancing the SNACK Startup Procedure ............39 4.5 Performance Evaluation ............41 4.5.1 Window Scaling ............42 4.5.2 Error Model ............42 4.5.3 Analytical Upper Bound of Wireless TCP Performance ............43 4.5.4 Effect of Channel Collisions and Transmission Errors ............44 4.5.5 Performance Comparison of Wired and Wireless Connections ............46 4.5.5.1 Link Emulator – No Link-level Error ............47 4.5.5.2 Link Emulator– Link-level Error ............47 4.5.5.3 Comparison between SNACK and SNACK-S ............49 4.6 Summary ............51 Chapter 5 TCP Performance over Multi-Hop Ad Hoc Networks ............52 5.1 TCP Performance Issues over Multi-hop Wireless Links ............52 5.2 Related Works ............53 5.2.1 Media Access in IEEE 802.11 MAC ............53 5.2.2 Interaction between TCP and MAC ............55 5.3 Description of Proposed Method ............57 5.3.1 Extension to IEEE 802.11 MAC ............57 5.3.2 Modification to TCP ............59 5.4 Numerical Results ............60 5.4.1 Multi-hop TCP Throughput ............61 5.4.2 Effect of Interference and Collisions ............65 55 Summary ............69 Chapter 6 Congestion Control with a Misbehaving Receiver ............70 6.1 Congestion Control Review ............70 6.2 TCP Receiver Misbehavior Modes ............71 6.2.1 ACK Division ............72 6.2.2 Massive Volume of Duplicate ACKs ............72 6.2.3 End-to-End Congestion Control Evasion ............73 6.3 Current Mechanisms in Combating Misbehaving TCP Receivers ............73 6.4 TCP Modification ............74 6.5 Simulation Results and Discussions ............76 66 Summary ............81 Chapter 7 Conclusion ............82 Reference ............83 Biography ............88

    [1]W. Stevens, TCP Slow-Start Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithm, RFC 2001, 1997.
    [2]V. Paxson, M. Allman, and W. Stevens, TCP Congestion Control, RFC 2581, 1999.
    [3]R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi, M. Gerla, TCP Startup Performance in Large Bandwidth Delay Networks, IEEE INFOCOM, 796–805, 2004.
    [4]S. Floyd, S. Ratnasamy, and S. Shenker, Modifying TCP's Congestion Control for High Speeds, - draft, 2002.
    [5]S. Floyd, HighSpeed TCP for Large Congestion Windows, RFC 3649, 2003.
    [6]A. Capone, L. Fratta, F. Martignon, Bandwidth Estimation Schemes for TCP over Wireless Networks, IEEE Transactions on Mobile Computing 3(2) 129–143, 2004.
    [7]M. Allman and V. Paxson, On Estimating End-to-End Network Path Properties, ACM SIGCOMM 263–274, 1999.
    [8]M. Jain, C. Dovrolis, End-to-End Available Bandwidth: Measurement Methodology, Dynamics, and Relation with TCP Throughput, IEEE/ACM Transactions on Networking 11(4) 537–549, 2002.
    [9]J. Martin, A. A. Nilsson, I. Rhee, Delay-based Congestion Avoidance for TCP, IEEE/ACM Transactions on Networking 11(3) 356–369, 2003.
    [10]R. Jain, A Delay-based Approach for Congestion Avoidance in Interconnected Heterogeneous Computer Networks, Computer Communication Review 19(5) 56–71, 1989.
    [11]L. Brakmo, L. Peterson, TCP Vegas: End to End Congestion Avoidance on a Global Internet, IEEE Journal on Selected Areas in Communications 13(8) 1465–1480, 1995.
    [12]J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan, Evaluation of TCP Vegas: Emulation and Experiment, ACM SIGCOMM 185–196, 1995.
    [13]J. Mo, R. J. La, V. Anantharam, and J. Walrand, Analysis and Comparison of TCP Reno and Vegas, IEEE INFOCOM 1556–1563, 1999.
    [14]S. Keshav, A Control-Theoretic Approach to Flow Control, ACM SIGCOMM 3–15, 1991.
    [15]J. C. Hoe, Improving the Start-up Behavior of a Congestion Control Scheme for TCP, ACM SIGCOMM 270–280, 1996.
    [16]J. Sun, M. Zukerman, K. T. Ko, G. Chen, and S. Chan, Effect of Large Buffers on TCP Queueing Behavior, IEEE INFOCOM 751–761, 2004.
    [17]C. Casetti, M. Gerla, S. Mascolo, M.Y. Sansadidi, and R. Wang, TCP Westwood: End-to-End Congestion Control for Wired/Wireless Networks, Wireless Networks Journal 8(5) 467–479, 2002.
    [18]V. Tsaoussidis and C. Zhang, TCP-Real: Receiver-oriented Congestion Control, The Journal of Computer Networks 40(4) 477–497, 2002.
    [19]P. C. Attie, A. Lahanas, and V. Tsaoussidis, Beyond AIMD: Explicit Fair-share Calculation, IEEE ISCC 727–734, 2003.
    [20]V. Firoiu and M. Borde, A Study of Active Queue Management for Congestion Control, IEEE INFOCOM 1435–1444, 2000.
    [21]B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, Recommendations on Queue Management and Congestion Avoidance in the Internet, RFC 2309, 1998.
    [22]S. Floyd, Reference on RED (Random Early Detection) Queue Management, http://www.icir.org/floyd/red.html.
    [23]Network Simulator, NS-2, http://www.isi.edu/nsnam/ns.
    [24]V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High Performance, RFC 1323, 1992.
    [25]R. Jain, The Art of Computer Systems Performance Analysis, John Wiley and Sons, New York, 1991.
    [26]J. Postel, Transmission Control Protocol, RFC 793, 1981.
    [27]H. Balakrishnan, V.N. Padmanabhan, S. Seshan, R.H. Katz, A Comparison of Mechanisms for Improving TCP Performance over Wireless Links, IEEE/ACM Trans. Networking 5 (6) 756–769, 1997.
    [28]A.V. Bakre, B.R. Badrinath, Implementation and Performance Evaluation of Indirect TCP, IEEE Transactions on Computers 46(3) 260–278, 1997.
    [29]H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement, IEEE INFOCOM, 2002.
    [30]IEEE Standard 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1999.
    [31]P. Karn, MACA: A New Channel Access Method for Packet Radio, ARRL/CRRL Amatuer Radio 9th Computer Networking Conference, 1990.
    [32]J. Kim B. Crow, I. Widjaja and P. Sakai, IEEE 802.11 Wireless Local Area Networks, IEEE Communications 35 (9) 116–126, 1997.
    [33]S. Sharma, Analysis of 802.11b MAC: A QoS, Fairness, and Performance Perspective, CoRR cs.NI/0411017, 2004.
    [34]M. Hassan and R. Jain, High Performance TCP/IP Networking: Concepts, Issues, and Solutions, Prentice-Hall, 2003
    [35]S. Floyd, T. Henderson, The NewReno Modification to TCP's Fast Recovery Algorithm, RFC 2582, 1999.
    [36]M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Acknowledgement Options, RFC 2018, 1996.
    [37]H. Balakrishnan, S. Seshan, E. Amir, R.H. Katz, Improving TCP/IP Performance over Wireless Networks, ACM MOBICOM 2–15, 1995.
    [38]H. Balakrishnan and R.H. Katz, Explicit Loss Notification and Wireless Web Performance, IEEE GLOBECOM, 1998.
    [39]S. Floyd, Issues of TCP with SACK, Technical Report, January 1996, http://www-nrg.ee.lbl.gov/floyd/.
    [40]R.C. Durst, G.J. Miller, E.J. Travis, TCP Extensions for Space Communications, ACM MOBICOM, 1996.
    [41]SCPS Transport Protocol (SCPS-TP), http://www.scps.org/scps/.
    [42]IEEE Standard 802.16-2004, Part 16: Air Interface for Fixed Broadband Wireless Access System, 2004.
    [43]H. Li, J. Lindskog, G. Malmgren, G. Miklos, F. Nilsson, G. Rydnell, Automatic Repeat Request (ARQ) Mechanism in HIPERLAN/2, IEEE Vehicular Technology Conference 3 2093–2097, 2000.
    [44]R.S. Cheng, H.T. Lin, W.S. Hwang, C.K Shieh, Improving the Ramping Up Behavior of TCP Slow Start, IEEE AINA 807–812, 2005.
    [45]R.S Cheng, H.T. Lin, TCP Selective Negative Acknowledgment over IEEE 802.11 Wireless Networks, IEEE ICNS, 2006.
    [46]J. R. Chen, Y. C. Chen, Vegas Plus: Improving the Service Fairness, IEEE Communications Letters 4 (5) 176–178, 2000.
    [47]D.A. Eckhardt, P. Steenkiste, Measurement and Analysis of the Error Characteristics of an In-Building Wireless Network, ACM SIGCOMM, 1996.
    [48]G.T. Nguyen, R. Katz, B. Noble, A Trace-Based Approach for Modeling Wireless Channel Behavior, Winter Simulation Conference, 1996.
    [49]E.N. Gilbert, Capacity of A Burst-noise Channel, Bell Systems Technical Journal 39 1253–1266, 1960.
    [50]I.F. Akyildiz, X. Wang, A Survey on Wireless Mesh Networks, IEEE Communications Magazine 4(9) S23–S30, 2005.
    [51]D. Kliazovich, F. Granelli, Cross-layer Congestion Control in Ad Hoc Wireless Networks, Ad Hoc Networks 4(6) 687–708, 2006.
    [52]H. Jiang, W. Zhuang, X. Shen, Cross-Layer Design for Resource Allocation in 3G Wireless Networks and Beyond, IEEE Communication Magazine 43(12) 120–126, 2005.
    [53]Y.g Xiao, X. Shan and Y. Ren, Cross-Layer Design Improves TCP Performance in Multihop Ad Hoc Networks, IEICE Transactions on Communications E88-B(8) 3375–3382, 2005.
    [54]F. Granelli, D. Kliazovich, Cross-layering for Performance Improvement in Multi-Hop Wireless Networks, ISPAN, 2005.
    [55]S. Basagni, M. Conti, S. Giordano, I. Stojmenovic, Mobile Ad Hoc Networking, Wiley-IEEE Press, 2004.
    [56]J. C. Moon, B. G. Lee, Rate-Adaptive Snoop: A TCP Enhancement Scheme Over Rate-Controlled Lossy Links, IEEE/ACM Transactions on Networking 14(3) 603–615, 2006.
    [57]R Wang, K. Yamada, M. Y. Sanadidi, M. Gerla, TCP with Sender-side Intelligence to Handle Dynamic, Large, Leaky Pipes, IEEE Journal on Selected Areas in Communications 23(2) 235–248, 2005.
    [58]G. Xylomenos, G. C. Polyzos, P. Mahonen and M. Saaranen, TCP Performance Issues over Wireless Links, IEEE Communications Magazine 39(4) 52–58, 2001.
    [59]J. Liu and S. Singh, ATCP: TCP for Mobile Ad Hoc Networks, IEEE Journal on Selected Areas in Communications 19(7) 1300–1315, 2001.
    [60]K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, A Feedback Based Scheme for Improving TCP Performance in Ad-hoc Wireless Networks, IEEE Personal Communications 8(1) 34–39, 2001.
    [61]J.P. Monks, P. Sinha and V. Bharghavan, Limitations of TCP-ELFN for Ad Hoc Networks, MOMUC, 2000.
    [62]E. Altman and T. Jimnez, Improving TCP over Multihop Wireless Networks using Delayed ACK, MADNET, 2003.
    [63]A. A. Kherani, R. Shorey, Performance Improvement of TCP with Delayed ACKs in IEEE 802.11 Wireless LANs, IEEE WCNC, 2004.
    [64]R.S. Cheng, H.T. Lin, Improving TCP Performance with Bandwidth Estimation and Selective Negative Acknowledgment in Wireless Networks, Journal of Communications and Networks 9 (3) 236–246, 2007.
    [65]T. S. Rappaport and T. Rappaport, Wireless Communications: Principles and Practice, 2nd Edition, Prentice Hall, 2001.
    [66]G. Holland, N. Vaidya, Analysis of TCP Performance over Mobile Ad Hoc Networks, Wireless Networks 8(2) 275–288, 2002.
    [67]V. Jacobson, M. Karels, Congestion Avoidance and Control, ACM SIGCOMM, 314–329, 1988.
    [68]S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, TCP Congestion Control with a Misbehaving Receiver, ACM Computer Communications Review, 71–78, 1999.
    [69]V. Arya, T. Turletti, Dealing with Receiver Misbehavior in Multicast Congestion Control, INRIA Research Report, No. 4899, 2003.
    [70]E. Kohler, M. Handley, S. Floyd, Datagram Congestion Control Protocol (DCCP), http://www.icir.org/kohler/dcp, 2005.
    [71]M. Allman, On the Generation and Use of TCP Acknowledgments, Computer Communications Review, 1998.
    [72]M. Allman, TCP Byte Counting Refinements, Computer Communication Review, 1999.
    [73]R. Ludwig, M. Meyer, The Eifel Detection Algorithm for TCP, RFC 3522, 2003.
    [74]R. Ludwig, R. Katz, The Eifel algorithm: Making TCP robust against spurious retransmissions, Computer Communications Review, 30(1), 2000.
    [75]K. Ramakrishnan, S. Floyd, D. Black, The Addition of Explicit Congestion Notification (ECN) to IP, RFC 3168, 2001.
    [76]R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, Hypertext Transfer Protocol–HTTP1.1, RFC 2616, 1999.
    [77]V. Paxson, M. Allman, Computing TCP’s Retransmission Timer, RFC 2988, 2000.
    [78]V. Cerf, Y. Dalal, C. Sunshine, Specification of Internet Transmission Control Program, RFC 675, 1974.

    下載圖示 校內:2009-07-24公開
    校外:2011-07-24公開
    QR CODE