簡易檢索 / 詳目顯示

研究生: 丁世汎
Ting, Shyh-Fann
論文名稱: 氮化碳化矽薄膜及氮化氧化矽薄膜運用於高性能電子元件及深次微米CMOS的研究
The Study of Nitrided SiC Film and Nitrided SiO2 Film for High Performance Electronic Device and Deep Submicron CMOS Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 76
中文關鍵詞: 氮化氧化矽氮化碳化矽
外文關鍵詞: Nitrided SiC, Nitrided SiO2
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文討論兩種輕元素共價鍵材料:氮化碳化矽(SiCN)與氮化氧化矽(SiON)分別應用於高溫、發光電子元件及深次微米互補式金氧半(CMOS)電晶體元件之研究。

      對於氮化碳化矽薄膜之研究,吾人利用快速升溫化學氣相沈積(RTCVD)的方法在矽基板上成長結晶性矽基三元材料-氮化碳化矽薄膜,並以此研製氮化碳化矽/單晶矽的異質結構元件。首先,配合使用三種不同氣體Methysilane(SiCH6)、Acetylene(C2H4)、Propane(C3H8)來作為碳原子的來源,於矽基板上成長氮化碳化矽薄膜,並利用不同的材料特性分析方法來找到最佳成長條件。經實驗結果得知以C3H8成長之氮化碳化矽薄膜品質較佳,且其成本遠較其餘兩者低廉,因此選擇以C3H8作為成長元件的碳原子來源氣體。

      接著吾人以此氮化碳化矽/單晶矽的異質結構成長技術為基礎,成功的製作出氮化碳化矽MSM(Metal-Semiconductor-Metal)光檢測器與p-氮化碳化矽/n-單晶矽二極體之高溫元件,在200℃高溫環境下,不論是PN二極體的反向崩潰電壓或MSM光導體的明暗電流比,均佳於直接成長於矽晶圓之碳化矽元件者。此外,吾人也研究了n-氮化碳化矽之金半接觸特性,成功的研製出n-氮化碳化矽/p-單晶矽異質接面二極體與氧化銦鋅(IZO)/ n-氮化碳化矽蕭特基二極體之發光元件,此兩種發光二極體皆能發出短波長的紫色光,證明氮化碳化矽材料在短波長光源的應用上潛力無窮。

      此外,吾人以利用遠距電漿氮化法(Remote Plasma Nitridation)處理的超薄氮化氧化矽薄膜作為CMOS元件之閘極介電層,並對其元件之電特性與可靠度加以分析。實驗發現利用較低溫度並添加氦氣之遠距電漿氮化製程,較適合應用於現階段深次微米CMOS技術。因為以此遠距電漿氮化製程處理過的氮化氧化矽介電層能降低有效氧化層厚度與閘極漏電流,並同時確保元件之可靠度。

      In this dissertation, we report the investigation of two light-elements covalently bonded materials i.e. nitrided SiC (SiCN) and nitrided SiO2 (SiON) in the applications of electronic devices and deep submicron CMOS devices, respectively.

      Firstly, we study the preparation and characteristic of the cubic crystalline nitrided SiC (SiCN) films. The SiCN films have been grown on silicon substrate using various carbon sources by rapid-thermal chemical vapor deposition (RTCVD). The characteristics of the SiCN films grown with Methysilane(SiCH6), Acetylene(C2H4), and Propane(C3H8) are examined and compared. The experimental results show that the differences of chemical composition and chemical bonding state are co-related to the C bonding type of the different carbon source, and the SiCN film employed C3H8 gas possesses the most available for electronic devices and other applications. In addition, correlations between the growing stages to the microstructure of the cubic crystalline SiCN films have been illustrated in detail.
    Then based on the developed technique, two SiCN thin film devices i.e. SiCN/Si MSM (metal-semiconductor-metal) photo-detector and SiCN/Si pn heterojunction diode (HJD) were fabricated on silicon substrate. The properties of above-mentioned devices are better than the β-SiC MSM photo-detector and HJDs on Si for high temperature applications. We attribute this to the gradual Si-rich SiCN layer formed automatically during depositing SiCN film eliminates the large lattice mismatch (20%) between SiCN and Si substrate, thus improving performances at room temperature. In addition, the lattice matched interface and the wide band gap property of SiCN film provide the SiCN/Si hetero-epitaxial structure as the most promising application for high temperature.

      Next, we report the ohmic and Schottky contacts to the deposited SiCN films in detail. Two prototypical blue-violet light-emitting devices with SiCN material based on the study are developed. Both PL (photo luminescence) measurement and EL (electro luminescence) photograph are used to evaluate the devices’ optical performance. These experimental results indicate the potential applications of SiCN for advanced blue and ultra-violet (UV) optoelectronic devices.

      Finally, we study the effect of remote plasma nitridation (RPN) process on characteristics of ultrathin gate dielectric CMOSFETs with the thickness in the range of 18Å~22Å. On the other end, the effects of RPN temperature and He plus on nitrogen-profile within the nitrided SiO2 gate dielectric films have been investigated. Experimental results show that He can enhance the low-temperature RPN process to reduce gate current and thin effective thickness of gate dielectric films, especially for thinner gate dielectric films. In addition, the He plus RPN process can keep the ultra thin gate dielectric film’s integrity even under high-density plasma environment.

    中文摘要 (1) 各章中文提要 (3) 誌謝 (16) 目錄 (17) Table Captions (19) Figure Captions (20) Abstract (23) Chapter 1 Introduction 1     1-1 Background 1     1-2 Preface of this Dissertation 3 Chapter 2 Preparation and Characterization of SiCN Thin Films on Si Substrate Using      Various Carbon Sources 8     2-1 Introduction 8     2-2 Preparation process for the SiCN thin films on Si substrate 9     2-3 Characterization of the developed SiCN thin films 10     2-4 Conclusion 13 Chapter 3 SiCN High-Temperature Devices Fabricated On Si Substrates 26     3-1 Introduction 26     3-2 SiCN/Si MSM (metal-semiconductor-metal) photo- detector 27     3-3 SiCN/Si pn heterojunction diode (HJD) 30     3-4 Conclusion 33 Chapter 4 The SiCN Films for Opto-Electrical Devices Applications 45     4-1 Introduction 45     4-2 Film and device fabrication 46     4-3 Results and discussion 47     4-4 Conclusion 49 Chapter 5 The SiON Gate Dielectric Fabricated by Remote Plasma Nitridation 59     5-1 Introduction 59     5-2 The effect of RPN temperature 60     5-3 The effect of He plus 63     5-4 Conclusion 65 Chapter 6 Conclusions and Prospects 74     6-1 Conclusions 74     6-2 Prospects 75 Appendix A Author’s Resume Appendix B Author’s Related Publications

    [1-1] J. D. Hwang, Y. K. Fang, Y. J. Song, and D. N. Yaung,“Epitaxial growth and electrical characteristics of β-SiC on Si by low-pressure rapid thermal chemical vapor deposition,” Jpn. J. Appl. Phys., vol.34, pp. 1447-1450, 1995.

    [1-2] A. J. Steckel, J. P. Li, “Epitaxial Growth of β-SiC on Si by RTCVD with C3H8 and CH4,” IEEE Trans. on Electron Devices, vol.39, no.1, pp.64-74, 1992.

    [1-3] J. A. Powell, L. G. Matus, and M. A. Kuczmarski, “Growth and characteristics of cubic single-crystal SiC films on Si,” J. Electrochem. Soc., vol.134, no.6, pp.1558-1565, 1987.

    [1-4] S. Nishino, H. Suhara, H. Ono, and Matsunami, “Epitaxial growth and electric characteristics of cubic SiC on silicon,” J. Appl. Phys., vol.61, no.10, pp.4889-4893, 1987.

    [1-5] P. Liaw, and R. F. Davis, “Epitaxial growth and characterization of β-SiC thin films,” J. Electrochem. Soc., vol.132, no.3, pp.642-648, 1985.

    [1-6] Kuen-Hsien Wu, Yean-Kuen Fang, Jing-Hong Zhou, and Jyh-Jier Ho, “β-SiC Photodiodes Prepared on Silicon Substrates by Rapid Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol.36, no.8, pp.5151-5155, 1997.

    [1-7] Kuen-Hsien Wu, Yean-Kuen Fang, Jen-Yeu Fang and Jun-Dar Hwang, “The Growth and Characterization of Silicon/Silicon-Carbide Heteroepitaxial Films on Silicon Substrates by Rapid Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol.35, no.7, pp.3836-3840, 1996.

    [1-8] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, T. J. Chen, “SiC/Si heterostructure negative-differential-resistance diode for high-temperature applications.” Applied Physics Letters, Vol. 72, No. 23, pp. 3017-3019, 1998.

    [1-9] S. F. Ting, Y. K. Fang, C. H. Chen, C. W. Yang, W. T. Hsieh, J. J. Ho, M. C. Yu, M. S. Liang, S. Chen, R. Shih, “The Effect of Remote Plasma Nitridation on the Integrity of the Ultrathin Gate Dielectric Films in 0.13μm CMOS Technology and Beyond”, IEEE Electron Device Letters, Vol. 22, No. 7, pp. 327-329, 2001.

    [1-10] Shyh-Fann Ting, Yean-Kuen Fang, Chien-Hao Chen, Chih-Wei Yang, Mo-Chiun Yu, Syun-Ming Jang, Chen-Hua Yu, Mong-Song Liang, Sunway Chen, R. Shih, “He plus remote plasma nitridation of ultra-thin gate oxide for deep submicron CMOS technology applications”, IEE Electronic Letters, Vol. 37, No. 12, pp. 788-790, 2001.

    [1-11] C. H. Chen, Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. C. Yu, T. H. Hou, M. F. Wang, S. C. Chen, C. H. Yu, M. S. Liang, “Thermally-Enhanced Remote Plasma Nitrided Ultrathin (1.65nm) Gate Oxide with Excellent Performances in Reduction of Leakage Current and Boron Diffusion”, IEEE Electron Device Letters, Vol. 22, No. 8, pp. 378-380, 2001.

    [1-12] Chien-Hao Chen, Yean-Kuen Fang, Chih-Wei Yang, Shyh-Fann Ting, Yong-Shiuan Tsair, Ming-Fang Wang, Tuo-Hong Hou, Mo-Chiun Yu, Shih-Chang Chen, Simon M. Jang, Douglas C. H. Yu, Mong-Song Liang, “To Optimize Electrical Properties of the Ultrathin (1.6nm) Nitride/Oxide Gate Stacks With Bottom Oxide Materials and Post-Deposition Treatment”, IEEE Trans. on Electron Devices, Vol. 48, No. 12, pp. 2769-2776, 2001.

    [1-13] C. H. Chen, Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. F. Wang, Y. M. Lin, M. C. Yu, S. C. Chen, C. H. Yu, M. S. Liang, “High-Quality Ultrathin (1.6nm) Nitride/Oxide Stack Gate Dielectrics Prepared by Combining Remote Plasma Nitridation and LPCVD Technologies”, IEEE Electron Device Letters, Vol. 22, No. 6, pp. 260-262, 2001.

    [1-14] F. Link, H. Baumann, K. Bethge, H. Klewe-Nebenius, M. Burns, “C and N profiles of SiCN layers determined with nuclear reaction analyses and AES.” Nuclear Instruments and Methods in Physics Research B, Vol. 139, pp. 268-272, 1998.

    [1-15] J. J. Wu, K. H. Chen, C. Y. Wen, L. C. Chen, X. J. Guo, H. J. Lo, S. T. Lin, Y. C. Yu, C. W. Wang, E. K. Lin, “Effect of carbon sources on silicon carbon nitride films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor.” Diamond and Related Materials, No. 9, pp. 556-561, 2000.

    [1-16] Z. Gong, E. G. Wang, G. C. Xu, Y. Chen, “Influence of deposition condition and hydrigen on amorphous- to-polycrystalline SiCN films.” Thin Solid Films, Vol. 348, pp. 114-121, 1999.

    [1-17] J. J. Wu, C. T. Wu, Y. C. Liao, T. R. Lu, L. C. Chen, K. H. Chen, L. G. Hwa, C. T. Kuo, K, J. Ling, “Deposition of silicon carbon nitride films by ion beam sputtering.” Thin solid Films, Vol. 355-356, pp. 417-422, 1999.

    [1-18] D. M. Bhusari, C. K. Chen, K. H. Chen, T. J. Chuang, L. C. Chen, M. C. Lin, “Composition of SiCN crystals consisting of a predominantly carbon-nitride network.” Journal of Materials Research, Vol. 12, No. 2, pp. 322-325, 1997.

    [1-19] L. An, W. Zhang, V. M. Bright, M. L. Dunn, R. Raj, “Development of injectable polymer-derived ceramics for high temperature MEMS.” IEEE Micro Electro Mechanical Systems, MEMS 2000, The Thirteenth Annual International Conference, pp. 619-623, 23-27 Jan. 2000.

    [1-20] C. Y. Chang and S. M. SZE, ULSI Technology, p.p. 144-203, McGraw-Hill, 1996.

    [1-21] S. F. Ting, Y. K. Fang, W. T. Hsieh, Y. S. Tsair, C. N. Chang, C. S. Lin, M. C. Hsieh, H. C. Chiang, J. J. Ho, “Heteroepitaxial Silicon Carbide Nitride Films with Different Carbon Sources on Silicon Substrates Prepared by RTCVD”, to be published on Journal of Electronic Materials.

    [1-22] Shyh-Fann Ting, Yean-Kuen Fang, Wen-Tse Hsieh, Yong-Shiuan Tsair, Cheng-Nan Chang, Chun-Sheng Lin, Ming-Chun Hsieh, Hsin-Che Chiang, Jyh-Jier Ho, “Cubic Single-Crystalline Si1-x-yCxNy with Mirror Face Prepared by RTCVD”, ECS Electrochemical and Solid-State Letters, Vol. 4, Issue 11, pp. G91-G93, 2001.

    [1-23] Shyh-Fann Ting, Yean-Kuen Fang, Wen-Tse Hsieh, Yong-Shiuan Tsair, Cheng-Nan Chang, Chun-Sheng Lin, Ming-Chun Hsieh, Hsin-Che Chiang, Jyh-Jier Ho, “A High Breakdown-Voltage SiCN/Si Heterojunction Diode for High-Temperature Applications”, IEEE Electron Device Letters, Vol. 23, No. 3, pp. 142-144, 2002.

    [2-1] C. H. Hsieh, Y. S. Huang, K. K. Tiong, C. W. Fan, Y. F. Chen, L. C. Chen, J. J. Wu, K. H. Chen, “Piezoreflectance study of an Fe-containing silicon carbon nitride crystalline film.” Journal of Applied Physics, Vol. 87, No. 1, p.p. 280-284, (2000).

    [2-2] D. M. Bhusari, C. K. Chen, K. H. Chen, T. J. Chuang, L. C. Chen, M. C. Lin, “Composition of SiCN crystals consisting of a predominantly carbon-nitride network.” Journal of Materials Research, Vol. 12, No. 2, p.p. 322-325, (1997).

    [2-3] K. H. Chen, J. J. Wu, C. Y. Wen, L. C. Chen, C. W. Fan, P. F. Kuo, Y. F. Chen, Y. S. Huang, “Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition.” Thin Solid Films, 355-356, p.p. 205-209, (1999).

    [2-4] X. C. Xiao, Y. W. Li, L. X. Song, X. F. Peng, X. F. Hu, “Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar..” Applied Surface Science 156, p.p. 155-160, (2000).

    [2-5] W. T. Hsieh, Y. K. Fang, K. H. Wu, W. J Lee, C. W. Ho, “Using Porous Silicon As Semi-Insulating Substrate for β-SiC High Temperature Optical-Sensing Devices” IEEE Trans on Electron Devices, Vol. 48, No. 2, p.p. 801-803, (2001).

    [2-6] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, T. J. Chen, “Novel SiC/Si Heterostructure Negative Differential Resistance Diode for Use as Switch with High On/Off Current Ratio and Low Power Dissipation.” IEEE Electron Devices Lett., Vol. 19, No. 8, p.p. 294-296, (1998).

    [2-7] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, W. H. Chuang, J. D. Hwang, “A High Optical-Gain β-SiC Bulk-Barrier Phototransistor for High temperature Applications.” IEEE Photonics Technology Letters, Vol. 10, No. 11, (1998).

    [2-8] K. H. Wu, Y. K. Fang, J. J. Ho, T. J. Chen, “Single SiC/Si Heterostructure Negative Differential Resistance Diode for Novel Resistive-Fuse Application.” IEE Electronics Letters, Vol. 33, No. 21, p.p. 1824-1825, (1997).

    [2-9] J. D. Hwang, Y. K. Fang, K. H. Wu, S. M. Chou, “Improving Breakdown Voltage of SiC/Si Heterojunction with Graded Structure by Rapid Thermal CVD Technology.” IEEE Electron Devices, Vol. 44, No. 11, p.p. 2029-2031, (1997).

    [2-10] J. J. Wu, C. T. Wu, Y. C. Liao, T. R. Lu, L. C. Chen, K. H. Chen, L. G. Hwa, C. T. Kuo, K. J. Liang, “Deposition of silicon carbon nitride films by ion beam sputtering.” Thin Solid Films, 355-356, p.p. 417-422, (1999).

    [2-11] B. R. Stoner, G. H. M. Ma, S. D. Wolter, and J. T. Glass, “Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy.” Physical Review B, Vol. 45, p. 11067, (1992).

    [2-12] D. Marton, K. J. Boyd, A. H. Al–Bayati, S. S. Todorov, and J. W. Rabalais, “Carbon nitride deposited using energetic species: A two-phase system.” Physical Review Letters, Vol. 73, p. 118, (1994).

    [2-13] F. J. Gomez, P. Prieto, E. Elizalde, J. Piqueras, “SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition.” Applied Physics Letter, Vol. 69, p.p. 773-775, (1996).

    [2-14] W. F. A. Besling, A.Goossens, B. Meester, J. Schoonmam, “Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films.” Journal of Applied Physic, Vol. 83, p.p. 544-553, (1998).

    [2-15] Database maintained and distributed by the International Centre for Diffraction Data (ICDD), (1999).

    [3-1] C. H. Hsieh, Y. S. Huang, P. F. Kuo, Y. F. Chen, L. C. Chen, K. K. Tiong, “Piezoreflectance study of silicon carbon nitride nanorods.” Applied Physics Letters, vol. 76, no. 15, pp. 1-3, 2000.

    [3-2] X. C. Xiao, Y. W. Li, L. X. Song, X. F. Peng, X. F. Hu, “Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering os SiC in N2 and Ar.” Applied Surface Science, 156, pp. 155-160, 2000.

    [3-3] L. C. Chen, C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong, Y. S. Huang, “Crystalline silicon carbon nitride: A wide band gap semiconductor.” Applied Physics Letters, vol. 72, no. 19, pp. 2463-2465, 1998.

    [3-4] K. H. Chen, J. J. Wu, C. Y. Wen, L. C. Chen, C. W. Fan, P. F. Kuo, Y. F. Chen, Y. S. Huang, “Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition.” Thin Solid Films, 355-356, pp. 205-209, 1999.

    [3-5] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors.” Journal of Applied Physics, vol. 79, issue 10, pp. 7433-7473, 1996.

    [3-6] R. Korde, J. Geist, “Stable, High Quantum Effiency, UV-Enhanced Photodiodes by Arsenic Diffusion.” Solid-State Electronics, vol. 30, pp. 89-92, 1987.

    [3-7] M. I. Chaudhry, “Electrical transport properties of crystalline silicon carbide/silicon heterojunctions.” IEEE Electron Device Lett., vol. 12, pp. 670-672, Dec. 1991.

    [3-8] J. D. Hwang, Y. K. Fang, K. H. Wu, S. M. Chou, “Improving Breakdown Voltage of SiC/Si Heterojunction with Graded Structure by Rapid Thermal CVD Technology.” IEEE Trans. on Electron Devices, vol. 44, no. 11, pp.2029-2031, 1997.

    [3-9] T. Sugii, T. Ito, Y. Furumura, M. Doki, F. Mieno, M. Maeda, “Si heterojunction bipolar transistor with single-crystalline β-SiC emitters.” J. Electrochem. Soc., vol. 134, pp. 2545-2549, 1987.

    [3-10] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, T. J. Chen, “SiC/Si heterostructure negative-differential-resistance diode for high-temperature applications.” Applied Physics Letters, Vol. 72, No. 23, pp. 3017-3019, 1998.

    [4-1] F. Link, H. Baumann, K. Bethge, H. Klewe-Nebenius, M. Burns, “C and N profiles of SiCN layers determined with nuclear reaction analyses and AES.” Nuclear Instruments and Methods in Physics Research B, Vol. 139, p.p. 268-272, 1998.

    [4-2] X. C. Xiao, Y. W. Li, L. X. Song, X. F. Peng, X. F. Hu, “Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar..” Applied Surface Science 156, p.p. 155-160, 2000.

    [4-3] Z. Gong, E. G. Wang, G. C. Xu, Y. Chen, “Influence of deposition condition and hydrigen on amorphous- to-polycrystalline SiCN films.” Thin Solid Films, Vol. 348, p.p. 114-121, 1999.

    [4-4] K. H. Chen, J. J. Wu, C. Y. Wen, L. C. Chen, C. W. Fan, P. F. Kuo, Y. F. Chen, Y. S. Huang, “Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition.” Thin Solid Films, 355-356, p.p. 205-209, 1999.

    [4-5] K. B. Sundaram, J. Alizadeh, “Deposition and optical studies of silicon carbide nitride thin films.” Thin Solid Films, 370, p.p. 151-154, 2000.

    [4-6] L. C. Chen, C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong, Y. S. Huang, “Crystalline silicon carbon nitride: A wide band gap semiconductor.” Applied Physics Letters, vol. 72, no. 19, p.p. 2463-2465, 1998.

    [5-1] M. Rodder, S. Hattangady, N. Yu, W. Shiau, P. Nicollian, T. Laaksonen, C. P. Chao, M. Mehrotra, C. Lee, S. Murtaza and S. Aur, “A 1.2V, 0.1μm gate length CMOS technology: design and process issues” IEDM, p.623-626, 1998.

    [5-2] M. Mehrotra, J. C. Hu, A. Jain, W. Shiau, S. Hattangady, V. Reddy, S. Aur and M. Rodder, “A 1.2V, sub-0.09μm gate length CMOS technology” IEDM, p.419-422, 1999.

    [5-3] S. V. Hattangady, R. Kraft, D. T. Grider, M. A. Douglas, G. A. Brown, P. A.Tiner, J. W. Kuehne, P. E. Nicollian, and M. F. Pas, “Ultrathin nitrogen-profile engineered gate dielectric films” IEDM, p.495-498, 1996.

    [5-4] S. Krishnan, S. Rangan, S. Hattangady, G. Xing, K. Brennan, M. Rodder and S. Ashok, “Assessment of charge-induced damage to ultra-thin gate MOSFETs” IEDM, p.445-448, 1997.

    [5-5] Semiconductor Industry Association (SIA), The National Technology Roadmap for Semiconductor, 1999.

    [5-6] T. Pochet, A. Illie, F. Foulon, B. Equer, “Characterization of new a-Si:H Detectors fabricated from Amorphous Silicon deposited at High Rate by Helium enhanced PECVD” IEEE Transactions On Nuclear Science, 1994, Vol. 41, No. 4, p1014-1018.

    [5-7] S. L. Wright, M. B. Rothwell, J. H. Souk, and Y. Kuo, “a-Si Thin Film Transistors Using Dilute-Gas Plasma-Enhanced Chemical Vapor Deposition” IEEE Transactions On Electron Devices, 1993, Vol. 40, No. 11, p2128-2129.

    [5-8] M. Okumoto, Z. Su, S. Katsura, and A. Mizuno, “Dilution Effect with Inert Gases in Direct Synthesis of Methanol from Methane Using Nonthermal Plasma” IEEE Transactions On Industry Applications, 1999, Vol. 35, No. 5, p1205-1210.

    [5-9] S. Aur, T. Grider, V. Mcneil, T. Holloway and R. Eklund, “Effects of advanced processes on hot carrier reliability” IEEE, Annual International Reliability Physics Symposium, Reno, Nevada, 1998, p180-183.

    [5-10] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, Renee Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical Characteristics of Highly Reliable Ultrathin Hafnium Oxide Gate Dielectric” IEEE Electron Devices Letter, 2000, Vol. 21, No. 4, p181-183.

    下載圖示 校內:2004-01-24公開
    校外:2004-01-24公開
    QR CODE