簡易檢索 / 詳目顯示

研究生: 王鼎衡
Wang, Ting-Heng
論文名稱: 高發光效率與低效率滾降的黃色與暖白色有機發光二極體之開發: 元件優化、界面Exciplex能量轉移機制探討及元件效率滾降模型建立
Development of High-Efficiency and Low-Efficiency Roll-off Yellow and Warm White Organic Light-Emitting Diodes(OLEDs): Component Optimization, Investigation of Interface Exciplex Energy Transfer Mechanism, and Establishment of OLED Efficiency Roll-off Model
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: OLED磷光材料載子復合機制滾降機制Exciplex
外文關鍵詞: OLED, phosphorescent material, carrier recombination mechanism, roll-off mechanism, exciplex
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在眾多OLED結構設計中,Exciplex系統因其在元件中的良好性能而變得越來越重要,因為只要利用兩種具有匹配的分子軌道能級的供體分子和受體分子相互作用即可形成Exciplex中性分子,其優勢為降低單重態與三重態之間的能隙以獲得容易的RISC(具有TADF效應)、擁有雙極傳輸特性、降低激子淬滅以及高效的能量傳輸通道。但是,基於Exciplex的OLED往往會在較高電流密度下出現效率滾降,進而限制元件整體效率與亮度性能。同時,Exciplex存在複雜的製造工藝(材料選擇、混合比例以及再現性)。因此,基於Exciplex的OLED仍然存在許多問題。所以本研究的元件將設計圍繞Exciplex系統展開,以達到改善效率滾降、降低製成複雜性與提升再現性的目的。
    本論文包含兩大部分,第一部分針對界面Exciplex輔助單主體的黃色磷光OLED進行設計簡化與優化。首先,選擇TCTA與TPBI作為界面形成Exciplex的組合,並將客體磷光材料(PO-01)摻雜至TPBI,使界面Exciplex輔助TPBI主體誘導複合區的有效激子定位。同時,主體的PL與客體的吸收重疊面積大以及適當的能級對齊。因此,此EML設計有助於提高主客體能量轉移效率。接著,通過單載子元件分析,改善元件中載子平衡與控制載子在適當的位置進行復合。再者,通過調整客體摻雜濃度,提升元件效率與降低效率滾降,以此實現77.8 cd/A的CEmax與27.4 %的EQEmax與分別為3.3%與4.4%的低滾降效率。然後,藉由理想因子分析元件主要的載子復合機制,並與其他主體結構進行比較,以此證明本研究之EML的優勢。最後,利用光電與材料量測儀器找出影響元件效率的原因。
    第二部分是基於第一部分的結構加入藍色磷光材料(FIrpic)至TCTA,然後調整藍色與黃色客體摻雜濃度比例以及調整EML之主體與客體之相對位置,後續藉由改變傳輸層厚度與調變藍色磷光摻雜濃度,獲得32.6%的高EQEmax。同時,實現良好的暖白光發射穩定性,並且具有17.2%的溫和滾降效率。最後,利用TTA與SPA模型分析元件效率滾降機制,並測試元件再現性與利用和第一部分類似的光電與材料量測儀器找出影響元件效率的原因。

    In this work, we demonstrated the strategic design of forming exciplex at the interface using TPBI and TCTA, which simplifies the structure of yellow OLEDs and achieves high device efficiency. By utilizing the interface exciplex and TPBI as the host, and doping PO-01 (10 wt%) in TPBI, optimal energy transfer and exciton utilization were achieved, resulting in the highest device efficiency: current efficiency (CE) of 77.8 cd/A, power efficiency (PE) of 47.9 lm/W, and external quantum efficiency (EQE) of 27.4%. Subsequently, by doping FIrpic into TCTA with proper structural adjustments, high-efficiency warm white OLEDs with an external quantum efficiency exceeding 30% were achieved, and we fully discuss the efficiency roll off mechanism.

    摘要 I 致謝 XVI 目錄 XVII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 激基複合物(Exciplex)之理論介紹與文獻回顧 2 1.3 研究動機與研究方向 6 1.4 有機發光二極體基於激基複合物效應文獻整理 8 第二章 理論介紹和機制探討 11 2.1 基礎理論 11 2.1.1 能帶理論 11 2.1.2 有機材料的特性 13 2.1.3 受激發光理論 15 2.1.4 分子間的能量轉移機制 18 2.2 電激發光元件結構與理論 20 2.2.1 元件電流的限制 22 2.2.2 元件的結構 26 2.3 有機發光二極體之各層材料介紹 27 2.3.1 電洞注入及傳輸材料 27 2.3.2 電子注入及傳輸材料 28 2.3.3 主體材料 29 2.3.4 陽極材料與陰極材料 29 2.3.5 黃色客體發光材料 30 2.3.6 藍色客體發光材料 30 2.4 有機發光二極體的效率提升與改進 31 2.4.1 影響有機發光二極體的關鍵參數 32 2.4.2 增進載子的平衡方法 33 2.4.3 增進出光率的方法 34 第三章 實驗步驟與方法 36 3.1 元件製程與量測流程 36 3.2 真空熱蒸鍍系統設備 37 3.3 實驗材料 38 3.4 ITO基板前置處理步驟 40 3.5 真空熱蒸鍍機製程步驟 41 3.6 實驗量測與分析儀器 42 3.6.1 單體沉積速率測定 42 3.6.2 電致發光光譜與電性量測 42 3.6.3 穿透/吸收光譜儀 42 3.6.4 時間解析光激螢光(Time-Resolved Photoluminescence) 43 3.6.5 微拉曼及微光激發光譜儀 43 3.6.6 接觸角量測儀 44 3.6.7 紫外光電子能譜儀-UPS分析 45 3.6.8 原子力顯微鏡 46 3.6.9 變電壓阻抗分析儀 46 3.7 效率滾降與激子複合機制之理論模型 47 3.7.1 三重態-三重態湮滅(Triplet-Triplet Annihilation ; TTA ) 47 3.7.2 單重態-極化子湮滅(Singlet-polariton Annihilation ; SPA) 47 3.7.3 理想因子 48 第四章 結果與討論 49 4.1 基於界面Exciplex的黃色磷光OLED實現高效率與低滾降效率 50 4.1.1 改善元件載子傳輸之單載子元件比較 50 4.1.2 改善元件載子平衡之結構 52 4.1.3 改善元件載子傳輸平衡之V-J-L與效率表現 53 4.1.4 調整EML客體摻雜濃度之元件結構 58 4.1.5 調整EML客體摻雜濃度之元件V-J-L與效率表現 59 4.1.6 探討不同主體結構對激子複合的影響-基於理想因子 62 4.1.7 探討黃色OLED元件結構的能量轉移機制與確定Exciplex的形成 66 4.1.8 主體與客體的光致發光與吸收光譜 68 4.1.9 調整EML客體摻雜濃度之穿透光譜 69 4.1.10 確定主客體能量轉移之電致發光光譜 70 4.1.11 調整EML黃色客體摻雜濃度之能隙變化 71 4.1.12 調整EML黃色客體摻雜濃度之UPS能譜分析 72 4.1.13 調整EML黃色客體摻雜濃度之接觸角測量和表面能分析 75 4.1.14 調整EML黃色客體摻雜濃度之表面粗糙度(AFM)分析 76 4.1.15 調整EML黃色客體摻雜濃度之時間解析光激螢光分析 78 4.1.16 調整EML黃色客體摻雜濃度的元件之電容頻譜分析 79 4.2 基於界面Exciplex之WOLED實現高效率與低滾降效率 81 4.2.1 確定初步之EML的藍色與黃色發光客體摻雜濃度比例 81 4.2.2 調整EML之主體與客體之相對位置的三種結構 83 4.2.3 調整EML三種結構的V-J-L與效率表現 84 4.2.4 探討WOLED的三種結構之能量轉移機制 87 4.2.5 調整EML的藍色發光客體摻雜濃度之元件結構 89 4.2.6 調整EML的藍色發光客體摻雜濃度之元件結構V-J-L與效率表現 90 4.2.7 改善元件載子傳輸之單載子元件比較 92 4.2.8 改善元件載子平衡之結構 94 4.2.9 改善元件載子傳輸平衡之V-J-L與效率表現 95 4.2.10 探討WOLED元件結構在不同亮度下的穩定性 100 4.2.11 調整EML藍色客體摻雜濃度之能隙變化 101 4.2.12 調整EML藍色客體摻雜濃度之UPS能譜分析 102 4.2.13 調整EML藍色客體摻雜濃度以及輔助主體中黃色客體摻雜濃度之時間解析光激螢光分析 105 4.2.14 調整EML客體摻雜濃度之穿透光譜 106 4.2.15 探討WOLED元件結構在最佳化參數的穩定性 106 4.2.16 探討WOLED元件結構在最佳化參數的滾降效率模型擬合 107 第五章 結論與未來展望 109 5.1 結論 109 5.2 未來展望 109 參考文獻 111

    [1] M. Sarma, L. M. Chen, Y. S. Chen, K. T. Wong, “Exciplexes in OLEDs: Principles and promises” Materials Science & Engineering R, vol. 150, p. 100689, 2022.
    [2] B. Hu, Z. Yang, F. E. Karasz, “Electroluminescence of pure poly(N‐vinylcarbazole) and its blends with a multiblock copolymer” Journal of Applied Physics, vol. 76, no. 4, pp. 2419-2422, 1994.
    [3] K. Goushi, K. Yoshida, K. Sato, C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion” Nature Photonics, vol. 6, pp. 253-258, 2012.
    [4] K. Goushi, C. Adachi, “Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes” Applied Physics Letters, vol. 101, no. 2, p. 023306, 2012.
    [5] Y. S. Park, K. H. Kim, J. J. Kim, “Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes” Applied Physics Letters, vol. 102, no. 15, p. 153306, 2013.
    [6] M. Chapran, P. Pander, M. Vasylieva, G. W. Salyga, J. Ulanski, F. B. Dias, P. Data, “Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex” ACS Applied Materials and Interfaces, vol. 11, pp. 13460-13471, 2019.
    [7] B. Valeur, M. N. Berberan-Santos, “Molecular Fluorescence: Principles and Applications” second edition, Wiley-VGH, Weinheim, Germany, 2012.
    [8] M. Zhang, C. J. Zheng, H. Lin, S. L. Tao, “Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes” Materials Horizons, vol. 8, no. 2, pp. 401-425, 2021.
    [9] S. F. Wu, S. H. Li, Y. K. Wang, C. C. Huang, Q. Sun, J. J. Liang, L. S. Liao, M. K. Fung, “White organic LED with a Luminous Efficacy Exceeding 100 lm/w without Light Out-Coupling Enhancement Techniques” Advanced Functional Materials, vol. 27, no. 31, p. 1701314, 2017.
    [10] X. Zhao, X. Tang, R. Pan, J. Xu, F. Qu, Z. Xiong, “Direct observation of reverse intersystem crossing from fully confined triplet exciplexes using magneto-electroluminescence†” Journal of Materials Chemistry C, vol. 7, no. 35, pp. 10841- 10850, 2019
    [11] P. Yuan, X. Qiao, D. Yan, D. Ma, “Magnetic field effects on the quenching of triplet excitons in exciplex-based organic light emitting diodes†” Journal of Materials Chemistry C, vol. 6, no. 21, pp. 5721-5726, 2018.
    [12] D. Graves, V. Jankus, F. B. Dias, A. Monkman, “Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m-MTDATA:PBD Exciplex” Advanced Functional Materials, vol. 24, no. 16, pp. 2343-2351, 2013.
    [13] S. K. Cushing, W. Ding, G. Chen, C. Wang, F. Yang, F. Huang, N. Wu, “Excitation wavelength dependent fluorescence of graphene oxide controlled by strain†” Nanoscale, vol. 9, no. 6, pp. 2240-2245, 2017.
    [14] C. K. Moon, J. S. Huh, J. M. Kim, J. J. Kim, “Electronic Structure and Emission Process of Excited Charge Transfer States in Solids” ACS Chemistry of Materials, vol. 30, no. 16, pp. 5648-5654, 2018.
    [15] P. B. Deotare, W. Chang, E. Hontz, D. N. Congreve, L. Shi, P. D. Reusswig, B. Modtland, M. E. Bahlke, C. K. Lee, A. P. Willard, V. Bulovic, T. V. Voorhis, M. A. Baldo, “Nanoscale transport of charge-transfer states in organic donor–acceptor blends” Nature Materials, vol. 14, pp. 1130-1134, 2015.
    [16] H. Nakanotani, T. Furukawa, K. Morimoto, C. Adachi, “Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers” Science Advances, vol. 2, no. 2, P. e1501470, 2016.
    [17] B. Li, L. Gan, X. Cai, X. L. Li, Z. Wang, K. Gao, D. Chen, Y. Cao, S. J. Su, “An Effective Strategy toward High-Efficiency Fluorescent OLEDs by Radiative Coupling of Spatially Separated Electron–Hole Pairs” Advanced Materials Interfaces, vol. 5, no. 10, p. 1800025, 2018.
    [18] H. Mu, Y. Jiang, H. Xie, “Efficient blue phosphorescent organic light emitting diodes based on exciplex and ultrathin Firpic sandwiched layer” Organic Electronics, vol. 66, pp. 195-205.
    [19] S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, S. Y. Lee, “Low-Power Flexible Organic Light-Emitting Diode Display Device” Advanced Materials, vol. 23, no. 31, pp. 3511-3516, 2011
    [20] Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, C. Adachi, “Triplet Exciton Confinement in Green Organic Light-Emitting Diodes Containing Luminescent Charge-Transfer Cu(I) Complexes” Advanced Functional Materials, vol. 22, no. 11, pp. 2327-2336, 2012.
    [21] C. J. Chiang, A. Kimyonok, M. K. Etherington, G. C. Griffiths, V. Jankus, “Ultrahigh Efficiency Fluorescent Single and Bi-Layer Organic Light Emitting Diodes: The Key Role of Triplet Fusion” Advanced Functional Materials, vol. 23, no. 6, pp. 739-746, 2012.
    [22] J. H. Lee, S. Lee, S. J. Yoo, K. H. Kim, J. J. Kim, “Langevin and Trap-Assisted Recombination in Phosphorescent Organic Light Emitting Diodes” Advanced Functional Materials, vol. 24, no. 29, pp. 4681-4688, 2014.
    [23] H. Go, T. W. Koh, H. Jung, C. Y. Park, T. W. Ha, E. M. Kim, M. H. Kang, Y. H. Kim, C. Yun, “Enhanced light-outcoupling in organic light-emitting diodes through a coated scattering layer based on porous polymer films” Organic Electronics, vol. 47, pp. 117-125, 2017.
    [24] J. L. Liao, P. Rajakannu, P. Gnanasekaran, S. R. Tsai, C. H. Lin, S. H. Liu, C. H. Chang, G. H. Lee, P. T. Chou, Z. N. Chen, Y. Chi, “Luminescent Diiridium Complexes with Bridging Pyrazolates: Characterization and Fabrication of OLEDs Using Vacuum Thermal Deposition” Advanced Optical Materials, vol. 6, no. 11, p. 1800083, 2018.
    [25] X. Li, Y. Xie, Z. Li, “Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals” Chemistry : An Asian Journal, vol. 16, no. 19, pp. 2817-2829, 2021.
    [26] M. I. Alam, M. R. Nagar, S. R. Nayak, A. Choudhury, J. H. Jou, “Acceptor Interlocked Molecular Design for Solution-Processed Stable Deep-Blue TADF and Hyper Fluorescence Organic LED Enabling High-Efficiency” Advanced Optical Materials, vol. 10, no. 18, p. 2200376, 2022.
    [27] H. Shin. S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, J. J. Kim, “Blue Phosphorescent Organic Light-Emitting Diodes Using an Exciplex Forming Co-host with the External Quantum Efficiency of Theoretical Limit” Advanced Materials, vol. 26, no. 27, pp. 4730-4734, 2014.
    [28] J. H. Lee, S. H. Cheng, S. J. Yoo, H. Shin, J. H. Chang, C. I. Wu, K. T. Wong, J. J. Kim, “An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage” Advanced Functional Materials, vol. 25, no. 3, pp. 361-366, 2014.
    [29] H. Cho, J. Lee, J. I. Lee, N. S. Cho, J. H. Park, J. Y. Lee, Y. Kang, “Phenylimidazole-based homoleptic iridium(III) compounds for blue phosphorescent organic light-emitting diodes with high efficiency and long lifetime” Organic Electronics, vol. 34, pp. 91-96, 2016.
    [30] C. J. Shih, C. C. Lee, T. H. Yeh, S. Biring, K. K. Keasvan, N. R. A. Amin, M. H. Chen, W. C. Tang, S. W. Liu, K. T. Wong, “Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes” ACS Applied Materials and Interfaces, vol. 10, no. 28, pp. 24090-24098, 2018.
    [31] Y. S. Park, S. Lee, K. H. Kim, S. Y. Kim, J. H. Lee, J. J. Kim, “Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency” Advanced Functional Materials, vol. 23, no. 39, pp. 4914-4920, 2013.
    [32] J. Zhao, S. Yuan, X. Du, W. Li, C. Zheng, S. Tao, X. Zhang, “White OLEDs with an EQE of 21% at 5000 cd/m2 and Ultra High Color Stability Based on Exciplex Host” Advanced Optical Materials, vol. 6, no. 23, p. 1800825, 2018.
    [33] J. H. Lee, H. Shin, J. M. Kim, J. J. Kim, “Exciplex-Forming Co-Host-Based Red Phosphorescent Organic LightEmitting Diodes with Long Operational Stability and High Efficiency” ACS Applied Materials and Interfaces, vol. 9, no. 4, pp. 3277-3281, 2017.
    [34] H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, H. Fujikake, “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes” Advanced Materials, vol. 24, no. 37, pp. 5099-5103, 2012.
    [35] Y. Chen, J. Xie, Z. Wang, J. Cao, H. Chen, J. Huang, J. Zhang, J. Su, “Highly efficient bipolar host material based-on indole and triazine moiety for red phosphorescent light-emitting diodes” Dyes and Pigments, vol. 124, pp. 188-195, 2016.
    [36] H. Go, T. W. Koh, H. Jung, C. Y. Park, T. W. Ha, E. M. Kim, M. H. Kang, Y. H. Kim, C. Yun, “Enhanced light-outcoupling in organic light-emitting diodes through a coated scattering layer based on porous polymer films” Organic Electronics, vol. 47, pp. 117-125, 2017.
    [37] B. D. To, H. C. Chen, D. D. Nguyen, W. Y. Yeh, J. R. Ho, H. C. Kan, C. C. Hsu, “Microporous polymer films for enhancing light extraction of white-light organic light-emitting diodes” Organic Electronics, vol. 59, pp. 164-170, 2018.
    [38] H. Go, E. M. Han, M. H. Kang, Y. H. Kim, C. Yun, “Fine control of optical scattering characteristics of porous polymer light-extraction layer for organic light-emitting diodes” Organic Electronics, vol. 67, pp. 79-88, 2018.
    [39] J. Ma, X. Jiang, Z. Liang, J. Cao, X. Zhang, Z. Zhang, “Highly power efficient organic light-emitting diodes based on Cs2CO3 n-doped and MoO3 p-doped carrier transport layers” Semiconductor Science and Technology, vol. 23, no. 3, p. 035009, 2009.
    [40] M. K. Fung, Y. Q. Li, L. S. Liao, “Tandem Organic Light-Emitting Diodes” Advanced Materials, vol. 28, no. 47, pp. 10381-10408, 2016.
    [41] G. Pfeifer, F. Chahdoura, M. Papke, M. Weber, R. Szucs, B. Geffory, D. Tondelier, L. Nyulaszi, M. Hissler, C. Muller, “Synthesis, Electronic Properties and OLED Devices of Chromophores Based on λ5-Phosphinines” Chemistry A European Journal, vol. 26, no. 46, pp. 10534-10543.
    [42] G. Kreiza, D. Berenis, D. Banevicius, S. Jursenas, T. Javorskis, E. Orentas, K. Kazlauskas, “High efficiency and extremely low roll-off solution- and vacuum-processed OLEDs based on isophthalonitrile blue TADF emitter” Chemical Engineering Journal, vol. 412, p. 128574, 2021.
    [43] C. H. Chen, J. T. Cheng, W. C. Ding, Z. L. Lin, Y. S. Chen, T. L. Chiu, Y. C. Lo, J. H. Lee, K. T. Wong, “New carboline-based donors for green exciplex-forming systems” Journal of the Chinese Chemical Society, vol. 68, no. 3, pp. 482-490, 2021.
    [44] H. Wang, D. Dong, L. Lian, F. Zhu, D. Xu, S. Wu, G. He, “High Efficiency Non-Doped White Organic Light Emitting Diodes Based on a Bilayer Interface-Exciplex Structure” Physica Status Solidi (a) applications and materials science, vol. 216, no. 11, p. 1900034, 2019.
    [45] S. Q. Sun, H. Liu, D. D. Feng, C. C. Huang, T. T. Wang, W. He, Y. J. Zhang, W. Luo, Q. Sun, M. K. Fung, “Rational arrangement of multiple exciplex hosts for highly efficient white organic light-emitting diodes†” Journal of Materials Chemistry C, vol. 9, no. 40, p. 14327, 2021
    [46] C. Fan, L. Zhu, B. Jiang, Y. Li, F. Zhao, D. Ma, J. Qin, C. Yang, “High Power Efficiency Yellow Phosphorescent OLEDs by Using New Iridium Complexes with Halogen-Substituted 2-Phenylbenzo[d]thiazole Ligands” The Journal of Physical Chemistry C, vol. 117, no. 37, pp. 19134-19141, 2013.
    [47] H. Xu, J. Lin, X. Jiang, Y. Jin, Z. Lin, X. Zhang, X. Li, H. Yang, Z. Wu, “Study on the difference in exciton generation processes for a single host and exciplex-type co-host” Optics Latters, vol. 46, no. 19, pp. 4840-4843, 2021.
    [48] X. Liu, Y. F. Wang, M. Li, Y. Zhu, C. F. Chen, “Aromatic-imide-based TADF material as emitter for efficient yellow and white organic light-emitting diodes” Organic Electronics, vol. 88, p. 106017, 2021.
    [49] T. Zhang, J. Yao, S. Zhang, S. Xiao, W. Liu, Z. Wu, D. Ma, “Highly efficient and low efficiency roll-off organic light-emitting diodes with double-exciplex forming co-hosts†” Journal of Materials Chemistry C, vol. 9, no. 18, pp. 6062-6067, 2021.
    [50] H. Lim, H. Shin, K. H. Kim, S. J. Yoo, J. S. Huh, J. J. Kim, “An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes” ACS Applied Materials and Interfaces, vol. 9, no. 43, pp. 37883-37887, 2017.
    [51] C. J. Shih, C. C. Lee, T. H. Yeh, S. Biring, K. K. Kesavan, N. R. A. Amin, M. H. Chen, W. C. Tang, S. W. Liu, K. T. Wong, “Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes” ACS Applied Materials and Interfaces, vol. 10, no. 28, pp. 24090-24098, 2018.
    [52] M. Wu, Z. Wang, Y. Liu, Y. Qi, J. Yu, “Non-doped phosphorescent organic light-emitting devices with an exciplex forming planar structure for efficiency enhancement” Dyes and Pigments, vol. 164, pp. 119-125, 2019.
    [53] S. Zhang, J. Yao, Y. Dai, Q. Sun, D. Yang, X. Qiao, J. Chen, D. Ma, “High efficiency and color quality undoped phosphorescent white organic light-emitting diodes based on simple ultrathin structure in exciplex” Organic Electronics, vol. 85, p. 105821, 2020.
    [54] K. Chen, F. Zhang, A. Li, R. Zhang, R. Sheng, Y. Duan, Y. Zhao, P. Chen, “High efficiency, ultra-low roll-offs in orange phosphorescent organic light-emitting devices using a novel exciplex system” Organic Electronics, vol. 106, p. 106536, 2022.
    [55] J. Jiang, X. Lin, H. Lei, J. Li, Z. Kou, “The effect of the exciplex heterojunction interlayer on efficiency roll-off in non-doped blue phosphorescent organic light-emitting diodes” Optical Materials, vol. 99, p. 109561, 2020.
    [56] L. Jia, L. Jin, K. Yuan, L. Chen, J. Yuan, S. Xu, W. Lv, R. Chen, “High-Performance Exciplex-Type Host for Multicolor Phosphorescent Organic Light-Emitting Diodes with Low Turn-On Voltages” ACS Sustainable Chemistry and Engineering, vol. 6, no. 7, pp. 8809-8815, 2018.
    [57] T. Xu, J. G. Zhou, M. K. Feng, H. Meng, “Simplified efficient warm white tandem organic light-emitting devices by ultrathin emitters using energy transfer from exciplexes” Organic Electronics, vol. 63, pp. 369-375, 2018.
    [58] Eeshita Manna, “Enhanced light out-coupling of organic light emitting devices (OLEDs) using novel plastic substrates and improved performance of OLED-based photoluminescence sensing platform” Iowa State University, 2017.
    [59] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence” Nature, vol. 492, pp. 234-238, 2012.
    [60] U. Wolf, V. I. Arkhipov, H. Bassler, “Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation” Physical Review B, vol. 59, pp. 7507-7513, 1999.
    [61] S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. F. Seidler, W. Riess, “Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation” Physical Review B, vol. 60, pp. 8791-8797, 1999.
    [62] M. Kity, I. Biaggio, M. Koehler, P. Gunter, “Conditions for ohmic electron injection at the Mg/Alq3 interface” Applied Physics Letters, vol. 80, no. 23, pp. 4366-4368, 2002.
    [63] M. A. Lambert, P. Mark, “Current Injection in Soilds” New York : Academic, 1970.
    [64] Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Effi ciency of over 100 lm /W −1” Advanced Materials, vol. 28, no. 13, pp. 2638-2643, 2016.
    [65] C. Ganzorig, M. Fujihira, “A possible mechanism for enhanced electrofluorescence emission through triplet–triplet annihilation in organic electroluminescent devices” Applied Physics Letters, vol. 81, no. 17, pp. 3137-3139, 2002.
    [66] V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices” Physical Review B, vol. 58, no. 7, pp. 3730-3740, 1998.
    [67] T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, “Doubling Coupling-Out Efficiency in Organic Light-Emitting Devices Using a Thin Silica Aerogel Layer” Advanced Materials, vol. 13, no. 15, pp. 1149-1152, 2001.
    [68] H. J. Peng, Y. L. Ho, X. J. Yu, H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films” Journal of Applied Physics, vol. 96, no. 3. pp. 1649-1654, 2004.
    [69] S. Reineke, K. Walzer, K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters” Physical Review B, vol. 75, p. 125328, 2007.
    [70] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence” Applied Physics Letters, vol. 75, no. 1, pp. 4-6, 1999.
    [71] J. C. Scott, S. Karg, S. A. Carter, “Bipolar charge and current distributions in organic light-emitting diodes” Journal of Applied Physics, vol. 82, no. 3, pp. 1454-1460, 1997.
    [72] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device” Journal of Applied Physics, vol. 90, no. 10, pp. 5048-5051, 2001.
    [73] M. A. Baldo, M. E. Thompson, S. R. Forrest, “Phosphorescent materials for application to organic light emitting devices” Pure and Applied Chemistry, vol. 71, no. 11, pp. 2095-2106, 1999.
    [74] X. Zhou, D. S. Qin, M. Pfeiffer, J. Blochwitz, A. Werner, J. Crechsel, B. Maennig, K. Leo, M. Bold, P. Erk, H. Hartmann, “High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers” Applied Physics Letters, vol. 81, no. 21, pp. 4070-4072, 2002.
    [75] M. Zhang, W. Liu, C. J. Zheng, K. Wang, Y. Z. Shi, X. Li, H. Lin, S. L. Tao, X. H. Zhang, “Tricomponent Exciplex Emitter Realizing over 20% External Quantum Efficiency in Organic Light-Emitting Diode with Multiple Reverse Intersystem Crossing Channels” Advanced Science, vol. 6, no. 14, p. 1801938, 2019.
    [76] Z. Qi, L. Liao, R. Y. Wang, Y. G. Zhang, Z. F. Yuan, “Roughness-dependent wetting and surface tension of molten lead on alumina” Transactions of Nonferrous Metals Society of China, vol. 31, no. 8, pp. 2511-2521, 2021.
    [77] H. Park, H. Kim, J. Lee, K. Lee, J. Yi, S. Oh, S. Sohn, D. Jung, S. Jang, and H. Chae, "Admittance spectroscopic analysis of organic light emitting diodes with the CFX plasma treatment on the surface of indium tin oxide anodes," Thin Solid Films, vol. 516, no. 7, pp. 1370-1373, 2008.
    [78] S. Tsang, S. So, and J. Xu, "Application of admittance spectroscopy to evaluate carrier mobility in organic charge transport materials," Journal of applied physics, vol. 99, no. 1, p. 013706, 2006.
    [79] W. Song, J. Y. Lee, “Light emission mechanism of mixed host organic light-emitting diodes” Applied Physics Letters, vol. 106, no. 12, p. 123306, 2015.
    [80] J. H. Lee, S. Lee, S. J. Yoo, K. H. Kim, J. J. Kim, “Langevin and Trap-Assisted Recombination in Phosphorescent Organic Light Emitting Diodes” Advanced Functional Materials, vol. 24, no. 29, pp. 4681-4688, 2014.
    [81] S. Lee, K. H. Kim, D. Limbach, Y. S. Park, J. J. Kim, “Low Roll-Off and High Efficiency Orange Organic Light Emitting Diodes with Controlled Co-Doping of Green and Red Phosphorescent Dopants in an Exciplex Forming Co-Host” Advanced Functional Materials, vol. 23, no. 33, pp. 4105-4110, 2013.
    [82] Z. Chen, X. K. Liu, C. J. Zheng, J. Ye, C. L. Liu, F. Li, X. M. Ou, C. S. Lee, X. H. Zhang, “High Performance Exciplex-Based Fluorescence–Phosphorescence White Organic Light-Emitting Device with Highly Simplified Structure” ACS Chemistry of Materials, vol. 27, no. 15, pp. 5206-5211, 2015.
    [83] H. L. Lee, K. H. Lee, J. Y. Lee, “Indoloindole as a new building block of a hole transport type host for stable operation in phosphorescent organic light-emitting diodes†” Journal of Materials Chemistry C, vol. 7, pp. 5988-5994, 2019.
    [84] Z. Liu, B. Zhao, Y. Gao, H. Chen, B. Dong, Y. Xu, H. Wang, B. Xu, W. Li, “Modulation for efficiency and spectra of non-doped white organic light emitting diodes by combining an exciplex with an ultrathin phosphorescent emitter” RSC Advances, vol. 10, no. 55, pp. 33461-33468, 2020.
    [85] T. Zhang, C. Shi, N. Sun, Z. Wu, D. Ma, “Simplified and high-efficiency warm/cold phosphorescent white organic light-emitting diodes based on interfacial exciplex co-host” Organic Electronics, vol. 92, p. 106123, 2021.
    [86] D. Luo, Y. Xiao, M. Hao, Y. Zhao, Y. Yang, Y. Gao, B. Liu, “Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission” Applied Physics Letters, vol. 110, no. 6, p. 061105, 2017.
    [87] D. Feng, D. Dong, L. Lian, H. Wang, G. He, “High efficiency non-doped white organic light-emitting diodes based on blue exciplex emission” Organic Electronics, vol. 56, pp. 216-220, 2018.
    [88] Q. Zhu, L. Zhou, X. Li, R. Wu, Q. Duanmu, “Highly efficient yellow organic light-emitting diodes with slow efficiency roll-off by mixing red and green emissions” Optical Materials, vol. 119, p. 111309, 2021.
    [89] M. Colella, P. Pander, D. D. S. Pereira, A. P. Monkman, “Interfacial TADF Exciplex as a Tool to Localize Excitons, Improve Efficiency, and Increase OLED Lifetime” ACS Applied Materials and Interfaces, vol. 10, no. 46, pp. 40001-40007, 2018.
    [90] S. Li, K. Chen, W. Sun, Z. Li, L. Zhou, “High Performance Yellow Phosphorescent Organic Light-Emitting Diodes Based on an Efficient Carriers Regulating Structure with Iridium Complex as Electron Manager” The Journal of Physical Chemistry C, vol. 125, no. 46, pp. 25422-25429, 2021.

    無法下載圖示 校內:2026-07-20公開
    校外:2026-07-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE