簡易檢索 / 詳目顯示

研究生: 陳勁克
Chen, Jin-Ke
論文名稱: 以DSP建構數位監控系統於腫瘤電磁熱療加熱器
Design of a DSP-Based Digital Monitoring System for Tumor Hyperthermia Electromagnetic Heating Machine
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 腫瘤熱療高週波數位控制晶片
外文關鍵詞: Thermotherapy, high frequency induction heating machine, digital microcontroller
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米磁粒腫瘤熱療是將磁性奈米粒子注射到腫瘤細胞中,並在體外以高週波加熱器提供交變磁場,使奈米磁粒升溫,達到殺死腫瘤細胞的效果。本研究目的在建立數位監控系統於高週波加熱器,使加熱參數數據化,有利於加熱實驗的控制及結果分析。本監控系統以德州儀器生產的數位控制晶片(TMS320F28235)為核心,輔以CPLD (EPM3256)和感測電路組成。此系統能在高週波加熱器運作過程中,即時傳回加熱器的輸出電壓,輸出電流和操作頻率等參數。經實驗結果證實可於加熱過程中量取頻率、電壓、電流等大小,轉為數值後,作為調整輸出的控制信號的依據,並在加熱器發生錯誤時即時做出反應,以保證其控制和安全性都能達到醫療設備的標準。

    Tumor hyperthermia by magnetic nanoparticles (MNP) is a therapy method by injects magnetic nanoparticles to the tumor cells and provides alternative magnetic field using high frequency induction heating machine which induced heats on the nanoparticles to kill the tumor cells. The main goal of this thesis is to design a DSP-based digital monitoring system for electromagnetic heating machine. In this system, the critical heating parameters are acquired and converted to digital values which are conducive to the control of heating experiments and for further results analysis. The digital monitoring system utilizes a digital microcontroller (TI TMS320F28235) as the core, supplemented with CPLD (EPM3256) and sensing circuits. This system is designed to be operated during the thermotherapy and provides instant feedback signals, such as voltage, current, and frequency. The experimental results show that the system function properly via the control signals, and respond to errors in a timely fashion that fulfill the controllability and safety of medical equipments.

    摘 要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 腫瘤電磁熱療理論和種類 1 1.3 研究動機和目的 3 1.4 論文架構 4 第二章 腫瘤電磁熱療理論 5 2.1 感應加熱理論基礎 5 2.1.1 磁滯損(hysteresis loss) 5 2.1.2 渦流損(eddy current loss) 6 2.2 奈米磁粒加熱原理 8 2.3 全橋式串聯諧振電路架構 10 2.3.1 全橋串聯諧振電路操作模式 10 第三章 數位監控系統設計 15 3.1 前言 15 3.2 高溫對系統之影響 15 3.2.1 對頻率的影響 15 3.2.2 對輸出電流的影響 17 3.3 主架構電路 17 3.4 檢測電路 19 3.4.1 相位檢測電路 19 3.4.2 振幅檢測電路 20 3.4.3 電位檢測電路 22 3.4.4 電流檢測電路 23 3.5 核心處理器 24 3.5.2 增強型捕捉模組(Enhanced Capture Module, eCAP) 24 3.5.3 類比數位轉換器(Analog to Digital Converte, ADC) 26 3.6 複雜可程式化邏輯裝置(Complex programmable logic device, CPLD) 27 3.7系統工作流程 31 3.7.1 軟體流程 32 第四章 實驗結果 34 4.1 前言 34 4.2 檢測電路訊號量測 34 4.2.1 振幅檢測電路實驗 34 4.2.2 相位檢測電路實驗 35 4.2.3 電位檢測電路實驗 36 4.2.4 電流檢測電路實驗 38 4.2.5 CPLD測試 39 4.3 奈米磁粒加熱實驗 41 4.3.1 驗證電路 42 4.3.2 第一次加熱實驗 44 4.3.3 第二次加熱實驗 46 4.3.4 第三次加熱實驗 48 4.3.5 第四次加熱實驗 50 4.3.6 實驗結果討論 52 4.4 電磁隔離實驗 54 第五章 結論與未來發展 57 5.1 討論與結論 57 5.2 未來展望 59 參考文獻 60 自述 65

    [1] 行政院衛生署,97年主要死因分析 http://www.doh.gov.tw/CHT2006/index_populace.aspx
    [2] 垣添忠生,“寫給患者和家屬的癌症醫療聖經”,如何,台北市,2006。
    [3] 張梅蘭,“物理因子治療學 冷、熱光、水療及機械性治療”,合記,台北市,2002。
    [4] B. Ribba, B. You, M. Tod, P. Girard, B. Tranchand, V. Trillet-Lenoir, and G. Freyer, "Chemotherapy may be delivered based on an integrated view of tumour dynamics," IET, Systems Biology, vol. 3, pp. 180-190, 2009.
    [5] L. Yong, L. Kwong-Sak, and T. S. K. Mok, "A novel evolutionary drug scheduling model in cancer chemotherapy," IEEE Transactions on Information Technology in Biomedicine, vol. 10, pp. 237-245, 2006.
    [6] D. DasGupta, G. von Maltzahn, S. Ghosh, S. N. Bhatia, S. K. Das, and S. Chakraborty, "Probing nanoantenna-directed photothermal destruction of tumors using noninvasive laser irradiation," Applied Physics Letters, vol. 95, pp. 233701-233701-3, 2009.
    [7] D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Letters, vol. 209, pp. 171-176, 2004.
    [8] H. Kaneko, K. Igarashi, K. Kataoka, and M. Miura, "Heat shock induces phosphorylation of histone H2AX in mammalian cells," Biochemical and Biophysical Research Communications, vol. 328, pp. 1101-1106, 2005.
    [9] M. Mahmood, X. Yang, L. Zhongrui, E. Dervishi, N. Ali, V. Saini, A. S. Biris, S. Trigwell, V. P. Zharov, and A. R. Biris, "Graphitic Materials for RF Thermal Ablation of Tumors," IEEE Transactions on Industry Applications, vol. 45, pp. 2162-2169, 2009.
    [10] R. Seip, C. Chien Ting, C. S. Hall, B. I. Raju, A. Ghanem, and K. Tiemann, "Targeted Ultrasound-Mediated Delivery of Nanoparticles: On the Development of a New HIFU-Based Therapy and Imaging Device," IEEE Transactions on Biomedical Engineering, vol. 57, pp. 61-70, 2010.
    [11] D. E. Kruse, L. Chun-Yen, D. N. Stephens, P. Sutcliffe, E. E. Paoli, S. H. Barnes, and K. W. Ferrara, "Spatial and Temporal-Controlled Tissue Heating on a Modified Clinical Ultrasound Scanner for Generating Mild Hyperthermia in Tumors," IEEE Transactions on Biomedical Engineering, vol. 57, pp. 155-166, 2010.
    [12] T. y. Wang, X. Zhen, F. Winterroth, T. L. Hall, J. B. Fowlkes, E. D. Rothman, W. W. Roberts, and C. S. Cain, "Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy-histotripsy," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, pp. 995-1005, 2009.
    [13] 蕭正昌,戴政祺,王威智,楊明長,“應用於腫瘤熱療之奈米磁粒加熱系統研製”,台灣大學生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,台北,2006。
    [14] S. Boutaleb, J. P. Pouget, C. Hindorf, A. Pelegrin, J. Barbet, P. O. Kotzki, and M. Bardies, "Impact of Mouse Model on Preclinical Dosimetry in Targeted Radionuclide Therapy," IEEE Transactions on Proceedings, vol. 97, pp. 2076-2085, 2009.
    [15] E. C. Pua and Z. Pei, "Ultrasound-mediated drug delivery," IEEE Transactions on Engineering in Medicine and Biology Magazine, vol. 28, pp. 64-75, 2009.
    [16] 楊雅涵,“製備磁性奈米粒子作為藥物載體”,國立成功大學生物科技研究所碩士論文,2007。
    [17] H. Y. Tseng, G. B. Lee, C. Y. Lee, Y. H. Shin, and X. Z. Lin, "Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy," IET, Nanobiotechnology, vol. 3, pp. 46-54, 2009.
    [18] X. Ruizhi, Y. Hui, Z. Yu, M. Ming, C. Zhongping, W. Changling, T. Gaojun, M. Jun, S. Xinchen, and G. Ning, "Three-Dimensional Model for Determining Inhomogeneous Thermal Dosage in a Liver Tumor During Arterial Embolization Hyperthermia Incorporating Magnetic Nanoparticles," IEEE Transactions on Magnetics, vol. 45, pp. 3085-3091, 2009.
    [19] M. Pavel and A. Stancu, "Ferromagnetic Nanoparticles Dose Based on Tumor Size in Magnetic Fluid Hyperthermia Cancer Therapy," IEEE Transactions on Magnetics, vol. 45, pp. 5251-5254, 2009.
    [20] R. K. M. D. Gilchrist, R. B. S. Medal, W. D. M. D. Shorey, R. C. M. D. Hanselman, J. C. M. D. Parrott, and C. B. M. D. Taylor, "Selective Inductive Heating of Lymph Nodes," Annals of Surgery, vol. 146, pp. 596-606, 1957.
    [21] M. Pavel and A. Stancu, "Study of the Optimum Injection Sites for a Multiple Metastases Region in Cancer Therapy by Using MFH," IEEE Transactions on Magnetics, vol. 45, pp. 4825-4828, 2009.
    [22] M. Pavel, G. Gradinariu, and A. Stancu, "Study of the Optimum Dose of Ferromagnetic Nanoparticles Suitable for Cancer Therapy Using MFH," IEEE Transactions on Magnetics, vol. 44, pp. 3205-3208, 2008.
    [23] Z. Chuanqian, D. T. Johnson, and C. S. Brazel, "Numerical Study on the Multi-Region Bio-Heat Equation to Model Magnetic Fluid Hyperthermia (MFH) Using Low Curie Temperature Nanoparticles," IEEE Transactions on NanoBioscience, vol. 7, pp. 267-275, 2008.
    [24] W. Xufei, T. Jintian, and S. Liqun, "Induction Heating of Magnetic Fluids for Hyperthermia Treatment," IEEE Transactions on Magnetics, vol. 46, pp. 1043-1051, 2010.
    [25] A. Jordan, R. Scholz, P. Wust, H. Fähling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl, and R. Felix, "Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo," International Journal of Hyperthermia, vol. 13, pp. 587-605, 1997.
    [26] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, "Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 225, pp. 118-126, 2001.
    [27] A. Jordan, R. Scholz, M. Koch, M. Lein, S. Deger, J. Roigas, K. Jung, and S. Loening, "Evaluation of Magnetic Fluid Hyperthermia in a Standard Rat Model of Prostate Cancer," Journal of Endourology, vol. 18, pp. 495-500, 2004.
    [28] 蘇信華,“奈米磁粒熱療感應加熱系統之研製”,國立成功大學電機工程學系碩士論文,2008。
    [29] 陳建璋,“半橋串聯共振式磁奈米粒熱療加熱系統研製”,國立成功大學電機工程學系碩士論文,2007。
    [30] 陳俊成,“應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統”,國立成功大學電機工程學系碩士論文,2008。
    [31] O. Lucia, J. M. Burdio, I. Millan, J. Acero, and D. Puyal, "Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating," IEEE Transactions on Industrial Electronics, vol. 56, pp. 3106-3116, 2009.
    [32] 陳熹棣,“高週波基礎理論與應用 淬火、微波加熱、電漿、超音波加工”,全華,台北市,1995。
    [33] S. L. Ho, W. Junhua, W. N. Fu, and Y. H. Wang, "A Novel Crossed Traveling Wave Induction Heating System and Finite Element Analysis of Eddy Current and Temperature Distributions," IEEE Transactions on Magnetics, vol. 45, pp. 4777-4780, 2009.
    [34] H. Kurose, D. Miyagi, N. Takahashi, N. Uchida, and K. Kawanaka, "3-D Eddy Current Analysis of Induction Heating Apparatus Considering Heat Emission, Heat Conduction, and Temperature Dependence of Magnetic Characteristics," IEEE Transactions on Magnetics, vol. 45, pp. 1847-1850, 2009.
    [35] 林榮義,“鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究”,國立中央大學物理研究所碩士論文,2000。
    [36] 生醫奈米科技教學資源中心主編,“生醫奈米技術”,教育部顧問室,台北市,2007。
    [37] Z. Dongsheng and D. Yiqun, "The Biocompatibility Study of Fe3O4 Magnetic Nanoparticles Used in Tumor Hyperthermia," IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS '06. 1st, pp. 339-342, 2006.
    [38] D. Cohen and I. Nemoto, "Ferrimagnetic Particles in the Lung Part 1: The Magnetizing Process," IEEE Transactions on Biomedical Engineering, vol. BME-31, pp. 261-273, 1984.
    [39] D. Cohen, I. Nemoto, L. Kaufman, and S. Arai, "Ferrimagnetic Particles in the Lung Part II: The Relaxation; Process," IEEE Transactions on Biomedical Engineering, vol. BME-31, pp. 274-285, 1984.
    [40] M. K. Kazimierczuk and D. Czarkowski, "Resonant power converter," John Wiley & Sons, 1995.
    [41] 李永勳,“電磁學”,偉明,台北市,1996。
    [42] V. Agarwal, H. Arya, and S. Bhaktavatsala, "Design and Development of a Real-Time DSP and FPGA-Based Integrated GPS-INS System for Compact and Low Power Applications," IEEE Transactions on Aerospace and Electronic Systems, vol. 45, pp. 443-454, 2009.
    [43] B. Akin, S. B. Ozturk, H. A. Toliyat, and M. Rayner, "DSP-Based Sensorless Electric Motor Fault-Diagnosis Tools for Electric and Hybrid Electric Vehicle Powertrain Applications," IEEE Transactions on Vehicular Technology, vol. 58, pp. 2679-2688, 2009.
    [44] E. J. Bueno, A. Hernandez, F. J. Rodriguez, C. Giron, R. Mateos, and S. Cobreces, "A DSP- and FPGA-Based Industrial Control With High-Speed Communication Interfaces for Grid Converters Applied to Distributed Power Generation Systems," IEEE Transactions on Industrial Electronics, vol. 56, pp. 654-669, 2009.
    [45] S. Guangyi, C. Cheung Shing, L. Wen Jung, L. Kwok-Sui, Z. Yuexian, and J. Yufeng, "Mobile Human Airbag System for Fall Protection Using MEMS Sensors and Embedded SVM Classifier," IEEE Transactions on Sensors Journal, vol. 9, pp. 495-503, 2009.
    [46] "TMS20F2823X Digitial Signal Controllers Data Manual," Texas Instruments, 2007.
    [47] "TMS320X2833X,2823X Enhanced Capture(eCAP) Module Reference Guide," Texas Instruments, 2008.
    [48] "TMS320X2833X Analog-to-Digital Converter(ADC) Module Reference Guide," Texas Instruments, 2007.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE