簡易檢索 / 詳目顯示

研究生: 曾名弘
Zeng, Ming-Hong
論文名稱: 奈米粒熱療加熱系統之模擬與探頭模型分析
Model Analysis and Simulation for Nanoparticle Thermotherapy Heating System with Applicator
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 電磁熱療奈米磁粒探頭模式
外文關鍵詞: Thermotherapy, magnetic nanoparticles, applicator models
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁奈米粒電磁熱療主要係利用奈米磁粒,經注射方式進入人體腫瘤細胞內,藉由奈米粒熱療加熱系統產生交變磁場,使奈米磁粒迅速升溫至42 ℃以上,達到消滅癌細胞之目的。本論文針對目前市面上使用於磁奈米粒加熱之高週波加熱器各種探頭進行模型研究分析,將分析結果與實際測量數據對照來驗證探頭等效電路之正確性。並探討高週波系統內部參數的影響,將分析求得之電路參數加上探頭等效電路,模擬探頭輸出各種電流與大小頻率的變化,與實際測量值互相比較驗證。藉由此研究之探頭模式分析與電路模擬結果,未來將可應用於改進加熱探頭之設計。

    The notion of magnetic nanoparticle thermotherapy is to injects magnetic nanoparticles into tumor cells, utilize the heating system generated alternating magnetic field, so that the magnetic nanoparticles heated up to 42°C and above, aiming to destroy the tumor cells. This study analyzes commercially available high-frequency heating devices used for heating nanoparticles. Analytical results and measurement comparisons are used to verify the effectiveness of applicator models. To investigate the effect of circuit parameters within the heating system, obtained circuit parameters and the applicator are analyzed. Simulating applicator output to vary the current and frequency demonstrate experimental results. This study of applicator models and simulation results for high-frequency heating circuits will improve future applicator designs.

    摘 要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1研究背景 1 1.2腫瘤熱治療的類型 1 1.3奈米磁粒電磁熱療的發展 3 1.4奈米磁粒在生醫上的應用 4 1.5研究方式與目的 4 1.6論文架構 5 第二章 基礎理論介紹 6 2.1奈米磁粒的特性 6 2.2奈米磁粒能量損耗 8 2.3磁奈米熱療機器介紹 10 2.3.1機器內部的控制系統介紹 10 2.3.2感應加熱原理 11 2.3.3感應加熱功率損耗 12 第三章 數值分析與驗證方式 16 3.1 前言 16 3.2 探頭模式分析 16 3.2.1 純感應加熱線圈 17 3.2.2 感應加熱線圈加鐵芯 20 3.3 驗證方式 25 3.3.1 實際量測 25 3.3.2 電路模擬軟體驗證 28 3.4 磁奈米熱療系統分析 29 第四章 模擬結果與討論 34 4.1 探頭數值模擬結果 34 4.1.1 探頭阻抗值計算 34 4.1.2 探頭阻抗模擬 37 4.2 探頭加C型肥粒鐵數值模擬結果 42 4.2.1 探頭加C型肥粒鐵阻抗值計算 42 4.2.2 探頭加C型肥粒鐵阻抗模擬 43 4.3 電磁模擬探頭與加肥粒鐵差異性 48 4.3.1 單純感應探頭模擬 48 4.3.2 感應探頭加C型肥粒鐵模擬 50 4.4磁奈米熱療系統模擬結果 53 4.4.1熱療系統模擬流程 53 4.4.2熱療系統模擬電路 55 4.4.3探頭輸出電流波形與數值 57 第五章 結論與未來發展 63 5.1 結論 63 5.2 未來展望 64 參考文獻 65 自述 68

    [1] 劉滌昭,“寫給患者和家屬的癌症醫療聖經”,如何出版社,民國九十五年。
    [2] J. Xing, J. Zeng, J. Yang, T. Kong, T. Xu, W. Roa, X. Wang, and J. Chen, "Gold-based nanoparticles for breast cancer diagnosis and treatment," 2007.
    [3] A. Sharma, Y. Qiang, D. Meyer, R. Souza, A. McConnaughoy, L. Muldoon, and D. Baer, "Biocompatible core-shell magnetic nanoparticles for cancer treatment," Journal of Applied Physics, vol. 103, pp. 07A308-07A308-3, 2008.
    [4] P. Togni, J. Vrba, and L. Vannucci, "Applicator for In-vivo Experiments on Mice with Melanoma Tumour," 14th Conference on Microwave Techniques, pp. 1-4, 2008.
    [5] E. Neufeld, M. Paulides, M. Capstick, G. C. Van Rhoon, and N. Kuster, "Latest advances in EM hyperthermia cancer treatments," International Conference on Electromagnetics in Advanced Applications, pp. 1016-1019, 2009.
    [6] C. A. Sawyer, A. H. Habib, K. Miller, K. N. Collier, C. L. Ondeck, and M. E. McHenry, "Modeling of temperature profile during magnetic thermotherapy for cancer treatment," Journal of Applied Physics, vol. 105, pp. 07B320-07B320-3, 2009.
    [7] B. Seongtae, L. Sang Won, A. Hirukawa, Y. Takemura, J. Youn Haeng, and L. Sang Geun, "AC Magnetic-Field-Induced Heating and Physical Properties of Ferrite Nanoparticles for a Hyperthermia Agent in Medicine," IEEE Transactions on Nanotechnology, vol. 8, pp. 86-94, 2009.
    [8] M. Bekovic and A. Hamler, "Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field," IEEE Transactions on Magnetics, vol. 46, pp. 552-555, 2010.
    [9] A. Taylor, Y. Krupskaya, K. Kramer, S. Fussel, R. Klingeler, B. Buchner, and M. Wirth, "Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia," Carbon, 2010.
    [10] W. Xufei, T. Jintian, and S. Liqun, "Induction Heating of Magnetic Fluids for Hyperthermia Treatment," IEEE Transactions on Magnetics, vol. 46, pp. 1043-1051, 2010.
    [11] J. Van der Zee, "Heating the patient: a promising approach?," Annals of oncology, vol. 13, pp.1173, 2002.
    [12] 廖文炫,張梅蘭,蔡美女,王淑芬,“物理因子治療學-冷、熱、光、水療及機器性治療”,合計圖書出版社,民國九十二年。
    [13] J. Chapelon, M. Ribault, A. Birer, F. Vernier, R. Souchon, and A. Gelet, "Treatment of localised prostate cancer with transrectal high intensity focused ultrasound," European journal of ultrasound, vol. 9, pp. 31-38, 1999.
    [14] J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," The Journal of General Physiology, vol. 26, pp. 179, 1942.
    [15] 蕭義正,“溫度感應型水膠應用於聚焦型超音波熱治療之研究”,私立大同大學機械工程研究所碩士論文,民國九十六年。
    [16] 林子翔,“奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計”,國立成功大學電機工程系碩士論文,民國九十八年。
    [17] 陳俊成,“應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統”,國立成功大學電機工程系碩士論文,民國九十七年。
    [18] R. Tucker, "Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer," Journal of endourology, vol. 17, pp. 601-607, 2003.
    [19] R. Gilchrist, R. Medal, W. Shorey, R. Hanselman, J. Parrott, and C. Taylor, "Selective inductive heating of lymph nodes," Annals of Surgery, vol. 146, pp. 596, 1957.
    [20] A. Jordan, R. Scholz, P. Wust, and H. Fahling, "Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 201, pp. 413-419, 1999.
    [21] 林嘉鈞,“製備具標靶葉酸授體診斷及治療的多功能 pluronic 修飾四氧化三鐵”,國立高雄大學生物科技研究所碩士論文,民國九十八年。
    [22] 蕭詠銜,“鎳奈米微粒間交互作用對磁特性的影響”,私立中原大學電機工程學系碩士論文,民國九十六年。
    [23] 連昭晴,“鐵金核殼型磁性複合奈米粒子之製備與應用”,國立成功大學化學工程學系碩士論文,民國九十三年。
    [24] 曾晧瑜,“使用超順磁氧化鐵於癌症高溫治療之研究”,國立成功大學工程科學系碩士論文,民國九十六年。
    [25] 莊萬發,“超微粒子理論影用”,復漢出版社,民國八十四年。
    [26] M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu, "Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field," Journal of Magnetism and Magnetic Materials, vol. 268, pp. 33-39, 2004.
    [27] R. Hergt, W. Andra, C. d'Ambly, I. Hilger, W. Kaiser, U. Richter, and H. Schmidt, "Physical limits of hyperthermia using magnetite fine particles," IEEE Transactions on Magnetics, vol. 34, pp. 3745-3754, 1998.
    [28] K. Tang, "Dynamic modelling of magnetic materials for high frequency applications," Journal of Materials Processing Technology, vol. 139, 2003.
    [29] R. Rosensweig, "Heating magnetic fluid with alternating magnetic field," Journal of Magnetism and Magnetic Materials, vol. 252, pp. 370-374, 2002.
    [30] P. Fannin and S. Charles, "The study of a ferrofluid exhibiting both Brownian and Neel relaxation," Journal of Physics D: Applied Physics, vol. 22, pp. 187-191, 1989.
    [31] I. Hilger, R. Hergt, and W. Kaiser, "Use of magnetic nanoparticle heating in the treatment of breast cancer,", pp. 33-39, 2005.
    [32] 蕭正昌,“應用於腫瘤熱療之奈米磁粒加熱系統研製”,國立成功大學電機工程系碩士論文,民國九十五年。
    [33] 陳建興,“全橋相移式高頻溫控感應加熱器之設計與研製”,私立中原大學電機工程學系碩士論文,民國九十四年。
    [34] 廖東城,王順忠,“電力電子學”,滄海書局,民國九十三年。
    [35] 賴耿陽,“高周波工業應用技術”,復漢出版社,民國七十六年。
    [36] 謝沐田,“高低頻變壓器設計”,全華書局,民國八十四年。
    [37] 范家瑞,“電磁感應技術應用於模具快速加熱系”,國立成功大學機械工程學系碩士論文,民國九十七年。
    [38] D. C. Marian K. Kazimierczuk, "Resonant power converters,"New York, 1995.
    [39] 李永勳,“電磁學”,偉明圖書,民國八十五年。
    [40] 戴江淮,“電磁學”,全威圖書,民國九十四年。
    [41] H. Wheeler, "Inductance formulas for circular and square coils," Proceedings of the IEEE, vol. 70, pp. 1449-1450, 1982.
    [42] G. Grandi, U. Reggiani, M. Kazimierczuk, and A. Massarini, "Optimal Design of Single-Layer Solenoid Air-Core Inductors for High Frequency Applications," pp. 358-361, 1997.
    [43] 陳祺銘,“環型鐵芯活用百科”,復文書局,民國八十七年。

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE