簡易檢索 / 詳目顯示

研究生: 曾慶文
Tzeng, Ching-Wen
論文名稱: 比較採用不同神經網路演算法於太陽能光伏發電系統之最大功率點追蹤之性能分析
Comparison of Performance Analysis of Maximum Power Point Tacking in Solar Photovoltaic Power Generation System Using Different Neural Network Algorithms
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 太陽能光伏發電系統最大功率點追蹤前饋式神經網路自適應網路模糊推論系統直流對直流升壓轉換器
外文關鍵詞: photovoltaic, maximum power point tracking, feedforward neural network, adaptive network fuzzy inference system, DC to DC boost converter
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出利用前饋式神經網路及自適應網路模糊推論系統控制演算法,使用於太陽能光伏系統中的最大功率點追蹤中,俾達成太陽能光伏系統輸出功率的最大化。本論文之研究系統架構一是由太陽能光伏系統、直流對直流升壓轉換器連接負載所組成,研究系統架構二則是由架構一之太陽能光伏發電系統、全釩氧化還原液流電池經直流鏈連接直流負載所組成。本論文採用MATLAB/Simulink環境設計太陽能光伏系統中的最大功率點追蹤,並且利用實際的輻照度及溫度訓練前饋式神經網路及自適應網路模糊推論系統。本論文所提出之前饋式神經網路及自適應網路模糊推論系統演算法,亦與傳統之擾動觀察法在太陽能光伏系統之性能上做比較。由模擬結果分析得知,本論文所提出之方法於太陽能光伏系統之不同性能上均有所改善。

    In this thesis, both feedforward neural network (FFNN) and adaptive network-based fuzzy inference system (ANFIS) are proposed to employ in the maximum power point tracking (MPPT) of a photovoltaic (PV) system to maximize its output power. The first system configuration in this thesis composes of a PV system and a DC-DC boost converter connected to the load while the second system configuration consists of the mentioned PV system and a vanadium redox flow battery (VRFB) connected to the DC load through the DC link. The MPPT of the studied PV system under MATLAB/Simulink is designed using practical irradiance and temperature data to train FFNN and ANFIS. The performance of the FFNN and ANFIS is also compared with the one using traditional perturbation and observation (P&O) method. From the simulation results, the performances of the studied PV systems using the proposed FFNN and ANFIS in the thesis have been improved.

    摘要 i SUMMARY ii 目錄 viii 表目錄 xii 圖目錄 xiii 符號說明 xvii 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 5 1-3 研究內容概要 9 第二章 研究系統之架構與數學模型 11 2-1 前言 11 2-2 太陽能發電系統之數學模型 15 2-2-1 光伏電池模型 15 2-2-2 太陽能光伏模組特性 17 2-2-3 太陽能陣列模型 19 2-2-4 直流對直流升壓轉換器模型 22 2-3 全釩氧化還原液流電池儲能系統之數學模型 26 2-3-1 全釩氧化還原液流電池之電氣等效電路模型 29 2-3-2 全釩氧化還原液流電池之熱的等效電路模型 32 2-3-3 雙向直流對直流換流器之數學模型 34 2-3-4 全釩氧化還原液流電池儲能系統之功率控制 36 2-4 直流負載轉換器之數學模型 38 第三章 類神經網路設計 41 3-1 前言 41 3-2 前饋式神經網路 43 3-3 自適應網路模糊推論系統 57 3-3-1 模糊邏輯控制器的組成 58 3-3-2 歸屬函數 58 3-3-3 Sugeno模糊模型 59 3-3-4 自適應網路模糊推論系統架構及學習算法 60 第四章 系統模擬分析 66 4-1 前言 66 4-2 架構一模擬分析 67 4-2-1 輻照度步階下降變化分析 68 4-2-2 輻照度步階上升變化分析 71 4-2-3 溫度步階下降變化分析 74 4-2-4 溫度步階上升變化分析 77 4-2-5 輻照度及溫度同時變動之分析 80 4-3 架構二之模擬分析 84 4-3-1 實際夏季輻照度及溫度變化 85 4-3-2 實際冬季輻照度及溫度變化 89 第五章 結論與未來研究方向 93 5-1 結論 93 5-2 未來研究方向 95 參考文獻 97 附錄:本論文研究架構所使用之參數表 103 Publication List 105

    [1] 台灣電力公司,購入電力概況。[Online]. Available:
    https://www.taipower.com.tw/tc/page.aspx?mid=207&cid=165&cchk=a83cd635-a792-4660-9f02-f71d5d925911, retrieved date: Apr. 1, 2022.
    [2] 行政院,全力衝刺太陽光電。[Online]. Available: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/4413b416-5f1e-419b-9a39-5a02c8a3ba8c, retrieved date: Mar. 1, 2020.
    [3] 台灣電力公司,再生能源發電概況。[Online]. Available: https://www.taipower.com.tw/tc/page.aspx?mid=204&cid=1582&cchk=5b8ce61
    9-7ff5-40e9-9032-bdfd93d197d9, retrieved date: Apr. 1, 2020.
    [4] 中華民國經濟部,推動能源轉型「展綠、增氣、減煤、非核」。
    [Online]. Available: https://www.moea.gov.tw/MNS/populace/Policy/Policy.aspx?menu_id=32800&policy_id=9, retrieved date: Apr. 1, 2020.
    [5] 中華民國經濟部,太陽光電板已有回收機制將持續與環保署研議精進。
    [Online]. Available: https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=99014, retrieved date: Apr. 1, 2020.
    [6] 宋佩勳、蕭旭文、李昇翰、朱少華,太陽能微最綠色、環保的能源,石油季刊,第53卷,第3期,第121-131頁,2017年9月。
    [7] X. Li, Y. Li, J. E. Seem, and P. Lei, “Maximum power point tracking for photovoltaic systems using adaptive extremum seeking control,” in Proc. 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, Dec. 12-15, 2011, pp. 1503-1508.
    [8] S. Farajdadian and S. M. H. Hosseini, “Design of an optimal fuzzy controller to obtain maximum power in solar power generation system,” Solar Energy, vol. 182, pp. 161-178, Apr. 2019.
    [9] I. Pervez, A. Pervez, M. Tariq, A. Sarwar, R. K. Chakrabortty, and M. J. Ryan, “Rapid and robust adaptive jaya (Ajaya) based maximum power point tracking of a PV-based generation system,” IEEE Access, vol. 9, pp. 48679-48703, Apr. 2021.
    [10] A. Govindharaj, A. Mariappan, A. Ambikapathy, V. S. Bhadoria, and H. H. Alhelou, “Real-time implementation of adaptive neuro backstepping controller for maximum power point tracking in photo voltaic systems,” IEEE Access, vol. 9, pp. 105859-105875, Aug. 2021.
    [11] X. Meng, F. Gao, T. Xu, and C. Zhang, “Fast two-stage global maximum power point tracking for grid-tied string PV inverter using characteristics mapping principle,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 564-574, Feb. Feb. 2022.
    [12] A. Ramyar, H. Iman-Eini, and S. Farhangi, “Global maximum power point tracking method for photovoltaic arrays under partial shading conditions,” IEEE Trans. Industrial Electronics, vol. 64, no. 4, pp. 2855-2864, Apr. 2017.
    [13] W. Zhang, G. Zhou, H. Ni, and Y. Sun, “A modified hybrid maximum power point tracking method for photovoltaic arrays under partially shading condition,” IEEE Access, vol. 7, pp. 160091-160100, Nov. 2019.
    [14] L. Xu, R. Cheng, and J. Yang, “A modified INC method for PV string under uniform irradiance and partially shaded conditions,” IEEE Access, vol. 8, pp. 131340-131351, Jul. 2020.
    [15] M. N. Bhukya, V. R. Kota, and S. R. Depuru, “A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion,” IEEE Access, vol. 7, pp. 43831-43845, Apr. 2019.
    [16] I. Hussain, R. K. Agarwal, and B. Singh, “MLP control algorithm for adaptable dual-mode single-stage solar PV system tied to three-phase voltage-weak distribution grid,” IEEE Trans. Industrial Informatics, vol. 14, no. 6, pp. 2530-2538, Jun. 2018.
    [17] B. Xiong et al., “An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects,” IEEE Access, vol. 7, pp. 162297-162308, Nov. 2019.
    [18] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [19] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [20] SunPower, “SPR-305-WHT-U,” 305 solar panel, Oct. 2007.
    [21] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [22] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
    [23] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [24] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
    [25] M. Skyllas-Kazacos and M. Kazacos “State of charge monitoring methods for vanadium redox flow battery control,” Journal of Power Sources, vol. 196, no. 20, pp. 8822-8827, Oct. 2011.
    [26] Y. Chang, M. Sun, W. Jia and Z. Liu, “Online model identification method of vanadium redox flow battery based on multiple innovation recursive least squares,” in Proc. 2020 Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, May 2020, pp. 758-762.
    [27] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Feb. 2010.
    [28] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [29] A. Khaligh, “Realization of parasitics in stability of DC-DC converters loaded by constant power loads in advanced multiconverter automotive systems,” IEEE Trans. Industrial Electronics, vol. 55, no. 6, pp. 2295-2305, Jun. 2008.
    [30] 彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
    [31] 余定中、林雨澄、張孝澤,太陽能發電系統最大功率點追蹤演算法之比較,中華民國第三十一屆電力工程研討會,台灣,台南,2010年12月3、4日。
    [32] 焦李成,神經網路系統理論,儒林圖書有限公司,1991年10月。
    [33] 張斐章、張麗秋,類神經網路,台灣東華書局股份有限公司,2005年9月。
    [34] B. M. Wilamowski and J. D. Irwin, Intelligent Systems, Piscataway, Boca Raton, USA: CRC Press, 2011.
    [35] 孫宗瀛、楊英魁,Fuzzy控制:理論、實作與應用,全華科技圖書股份有限公司,2005年9月。
    [36] 王進德,類神經網路與模糊控制理論入門與應用,全華科技圖書股份有限公司,2007年1月。
    [37] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
    [38] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年7月。
    [39] 高浩瑜,使用自適應類神經網路控制器於混合交流/直流微電網系統之性能改善,國立成功大學電機工程學系碩士論文,2021年6月。
    [40] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [41] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [42] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [43] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis and Design, Boston, Massachusetts, USA: Cengage Learning, 2017.
    [44] M. Negnevitsky, Artificial Intelligence a Guide to Intelligent Systems, Jersey City, NJ, USA: Prentice Hall, 2011.
    [45] 中央氣象局觀測資料查詢系統。[Online]. Available: https://eservice.cwb.gov.tw/ HistoryDataQuery/index.jsp, retrieved date: May.1, 2022
    [46] B. Banfield, D. A. Robinson, and A. P. Agalgaonkar “Comparison of economic model predictive control and rule-based control for residential energy storage systems,” IET Smart Grid, vol. 3 no. 5 pp.722-729, Oct. 2020.

    無法下載圖示 校內:2027-07-11公開
    校外:2027-07-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE