| 研究生: |
賴盈達 Lai, Ying-Da |
|---|---|
| 論文名稱: |
製備具抗菌潛力的星狀聚賴氨酸高分子修飾功能基團應用於對抗耐藥性細菌 Synthesis of Star Poly(L-lysine) Modified with Functional Groups as Potent Antimicrobial Agents for Combating drug-resistant Bacteria |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 聚胺基酸 、接枝共聚胺基酸 、星狀聚胺基酸 、抗菌高分子 |
| 外文關鍵詞: | homopolypeptides, graft copolypeptides, star polypeptides, antimicrobial polymer |
| 相關次數: | 點閱:64 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,結合氨基與醇基NCA開環聚合的機制,順利合成出3armed、4armed、6armed、8armed之星狀聚賴胺酸,並以百分之二十的接枝比例將不同的疏水性基團修飾於聚賴胺酸的側鏈。本實驗利用核磁共振光譜儀與凝膠滲透層析儀鑑定聚胺基酸的合成,探討不同arms數下的氨基酸聚合度與分子量。接枝共聚胺基酸方面,同樣利用核磁共振光譜儀分析不同疏水基團的接枝比例與接枝效率。接著從上述的合成結果中,選出六種特定聚胺基酸進行一系列的抗菌的研究。抗菌的對象主要為耐藥性菌種,菌種為大腸桿菌(E. coli)、克雷伯氏肺炎桿菌(Klebsiella pneumoniae,以下簡稱K.P.)、出血性大腸桿菌(Enterohaemorrhagic E. coli,以下簡稱EHEC)、金黃色葡萄球菌(Staphylococcus aureus,簡稱S.A.)、綠膿桿菌(Pseudomonas aeruginosa,簡稱P. aeruginosa)、痢疾桿菌(Shigella)、沙門氏桿菌(Salmonella)。研究設計為一小時內的抗菌表現,本研究強調短時間抗菌的重要性。計算抗菌IC50的濃度去探討六種聚氨基酸抗菌能力,亦探討不同構型對於抗菌能力的影響。以往的抗菌實驗強調抗菌高分子的生物相容性,本研究以小鼠纖維母細胞(NIH3T3)進行了細胞毒性實驗以及溶血性的研究。最後綜合以上數據,以選擇度的數值評估抗菌聚胺基酸。
We report the synthesis of star homopolypeptides and copolypeptides and their evaluation as antimicrobial agents. It is known that dendritic or star-shaped structures facilitate antimicrobial polypeptides to efficiently interact with cell membranes and consequently enhance antimicrobial potency. Polypeptides with different arms were synthesized by ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs) using initiators with corresponded number of functional group. GPC and NMR analyses confirmed the successful synthesis of these star polypeptides. Cationic, star polypeptides comprising poly(L-lysine) (PLL) were designed and synthesized as antimicrobial agents against Escherichia coli ,Klebsiella pneumoniae(KP), Pseudomonas aeruginosa and Enterohemorrhagic Escherichia coli(EHEC), Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa(P. aeruginosa), Shigella, Salmonella which are common pathogens found in nosocomial infection. It was found that the star polypeptides exhibited the enhancement of antimicrobial efficacy as compared to linear counterparts without hemolysis and significant cytotoxicity. Unlike the synthesis of antimicrobial, peptide-based dendrimers requiring complex and tedious reaction steps, the synthesis of these star polypeptides is simple and additional functionality can be incorporated by conjugation. Furthermore, antimicrobial polypeptides can overcome antibiotic resistance owing to their unique antibacterial process. Our present results demonstrated that these star polypeptides are promising antibacterial agents.
1. Creighton, T. E., Proteins: structures and molecular properties. 1993.
2. Schulz, G. E., Schirmer, R.H., Principles of Protein Structure.
3. Leuchs, H., Ueber die Glycin-carbonsäure. Berichte der deutschen chemischen Gesellschaft 1906, 39 (1), 857-861.
4. Cheng, J.; Deming, T. J., Synthesis of polypeptides by ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Top Curr Chem 2012, 310, 1-26.
5. Kricheldorf, H. R., Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew Chem Int Ed Engl 2006, 45 (35), 5752-84.
6. Daly, W. H.; Poché, D., The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Letters 1988, 29 (46), 5859-5862.
7. Deming, T. J., Living polymerization of α-amino acid-N-carboxyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (17), 3011-3018.
8. Chan, B. A.; Xuan, S.; Horton, M.; Zhang, D., 1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization ofN-ButylN-Carboxyanhydride Using Alcohol Initiators. Macromolecules 2016, 49 (6), 2002-2012.
9. Stannett, V. T., Block and graft copolymerization, vol I., R. J. Ceresa, Ed., wiley-interscience, new york, 1973, 370 pp. $24.95. Journal of Polymer Science: Polymer Letters Edition 1974, 12 (11), 669-670.
10. Meier, D. J., Theory of block copolymers. I. Domain formation in A-B block copolymers. Journal of Polymer Science Part C: Polymer Symposia 2007, 26 (1), 81-98.
11. Helfand, E., Block Copolymer Theory. III. Statistical Mechanics of the Microdomain Structure. Macromolecules 1975, 8 (4), 552-556.
12. Helfand, E.; Wasserman, Z. R., Block Copolymer Theory. 4. Narrow Interphase Approximation. Macromolecules 1976, 9 (6), 879-888.
13. Hadjichristidis, N.; Pispas, S.; Pitsikalis, M.; Iatrou, H.; Lohse, D. J., Graft Copolymers. 2002.
14. Feng, C.; Li, Y.; Yang, D.; Hu, J.; Zhang, X.; Huang, X., Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 2011, 40 (3), 1282-95.
15. Eisenbach, C. D.; Heinemann, T., Synthesis and Characterization of Graft Copolymers with Molecularly Uniform Urethane-Based Side Chains with Special Structural Elements. Macromolecules 1995, 28 (14), 4815-4821.
16. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal 1985, 17 (1), 117-132.
17. Buhleier, E.; Wehner, W.; VÖGtle, F., "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis 1978, 1978 (02), 155-158.
18. Kesharwani, P.; Jain, K.; Jain, N. K., Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science 2014, 39 (2), 268-307.
19. Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N. K., Dendrimer toxicity: Let's meet the challenge. Int J Pharm 2010, 394 (1-2), 122-42.
20. Duncan, R.; Izzo, L., Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005, 57 (15), 2215-37.
21. Fréchet, J. M. J., Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy. 1994.
22. Lee, C. C.; MacKay, J. A.; Frechet, J. M.; Szoka, F. C., Designing dendrimers for biological applications. Nat Biotechnol 2005, 23 (12), 1517-26.
23. Roberts JC1, B. M., Zera RT., Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. 1996.
24. Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R., Dendrimers. Journal of Controlled Release 2000, 65 (1-2), 133-148.
25. Jevprasesphant R1, P. J., Jalal R, Attwood D, McKeown NB, D'Emanuele A., The influence of surface modification on the cytotoxicity of PAMAM dendrimers. 2003.
26. Cancino, J.; Paino, I. M.; Micocci, K. C.; Selistre-de-Araujo, H. S.; Zucolotto, V., In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells. Toxicol Lett 2013, 219 (1), 18-25.
27. Wu, W.; Wang, W.; Li, J., Star polymers: Advances in biomedical applications. Progress in Polymer Science 2015, 46, 55-85.
28. Inoue, K., Functional dendrimers, hyperbranched and star polymers. Progress in Polymer Science 2000, 25 (4), 453-571.
29. Hirao, A.; Hayashi, M.; Loykulnant, S.; Sugiyama, K.; Ryu, S.; Haraguchi, N.; Matsuo, A.; Higashihara, T., Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives. Progress in Polymer Science 2005, 30 (2), 111-182.
30. Li, N.; Li, N.; Yi, Q.; Luo, K.; Guo, C.; Pan, D.; Gu, Z., Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 2014, 35 (35), 9529-45.
31. Byrne, M.; Victory, D.; Hibbitts, A.; Lanigan, M.; Heise, A.; Cryan, S.-A., Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomaterials Science 2013, 1 (12), 1223.
32. Schramm, O. G.; Pavlov, G. M.; van Erp, H. P.; Meier, M. A. R.; Hoogenboom, R.; Schubert, U. S., A Versatile Approach to Unimolecular Water-Soluble Carriers: ATRP of PEGMA with Hydrophobic Star-Shaped Polymeric Core Molecules as an Alternative for PEGylation. Macromolecules 2009, 42 (6), 1808-1816.
33. Murphy, R.; Borase, T.; Payne, C.; O'Dwyer, J.; Cryan, S. A.; Heise, A., Hydrogels from amphiphilic star block copolypeptides. RSC Adv. 2016, 6 (28), 23370-23376.
34. Lapienis, G., Star-shaped polymers having PEO arms. Progress in Polymer Science 2009, 34 (9), 852-892.
35. Kuckling, D.; Wycisk, A., Stimuli-responsive star polymers. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (14), 2980-2994.
36. Higashihara, T.; Hayashi, M.; Hirao, A., Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization. Progress in Polymer Science 2011, 36 (3), 323-375.
37. Deng, Y.; Zhang, S.; Lu, G.; Huang, X., Constructing well-defined star graft copolymers. Polym. Chem. 2013, 4 (5), 1289-1299.
38. Mei, L.; Jiang, Y.; Feng, S. S., Star-shaped block polymers as a molecular biomaterial for nanomedicine development. Nanomedicine (Lond) 2014, 9 (1), 9-12.
39. Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G., Star Polymers. Chem Rev 2016, 116 (12), 6743-836.
40. Organization, W. H., Antimicrobial Resistance: Global Report on Surveillance. 2014.
41. R, K.; Pv, K., Dendrimeric Biocides - A Tool for Effective Antimicrobial Therapy. Journal of Nanomedicine & Nanotechnology 2016, 07 (02).
42. O'Connell, K. M.; Hodgkinson, J. T.; Sore, H. F.; Welch, M.; Salmond, G. P.; Spring, D. R., Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew Chem Int Ed Engl 2013, 52 (41), 10706-33.
43. Morita, Y.; Tomida, J.; Kawamura, Y., Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 2014, 4, 422.
44. Lewis, K., Platforms for antibiotic discovery. Nat Rev Drug Discov 2013, 12 (5), 371-87.
45. Butler, M. S.; Blaskovich, M. A.; Cooper, M. A., Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo) 2013, 66 (10), 571-91.
46. Abd-El-Aziz, A. S.; Agatemor, C.; Etkin, N.; Overy, D. P.; Lanteigne, M.; McQuillan, K.; Kerr, R. G., Antimicrobial Organometallic Dendrimers with Tunable Activity against Multidrug-Resistant Bacteria. Biomacromolecules 2015, 16 (11), 3694-703.
47. Opar, A., Bad bugs need more drugs. Nature Reviews Drug Discovery 2007, 6 (12), 943-944.
48. Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; Greko, C.; So, A. D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A. Q.; Qamar, F. N.; Mir, F.; Kariuki, S.; Bhutta, Z. A.; Coates, A.; Bergstrom, R.; Wright, G. D.; Brown, E. D.; Cars, O., Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases 2013, 13 (12), 1057-1098.
49. Janiszewska, J.; Sowinska, M.; Rajnisz, A.; Solecka, J.; Lacka, I.; Milewski, S.; Urbanczyk-Lipkowska, Z., Novel dendrimeric lipopeptides with antifungal activity. Bioorg Med Chem Lett 2012, 22 (3), 1388-93.
50. Shallcross, L. J.; Howard, S. J.; Fowler, T.; Davies, S. C., Tackling the threat of antimicrobial resistance: from policy to sustainable action. Philos Trans R Soc Lond B Biol Sci 2015, 370 (1670), 20140082.
51. Marr, A. K.; Gooderham, W. J.; Hancock, R. E., Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 2006, 6 (5), 468-72.
52. Takahashi, H.; Palermo, E. F.; Yasuhara, K.; Caputo, G. A.; Kuroda, K., Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers. Macromol Biosci 2013, 13 (10), 1285-99.
53. Malanovic, N.; Lohner, K., Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta 2016, 1858 (5), 936-46.
54. Hurdle, J. G.; O'Neill, A. J.; Chopra, I.; Lee, R. E., Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 2011, 9 (1), 62-75.
55. Nguyen, L. T.; Haney, E. F.; Vogel, H. J., The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011, 29 (9), 464-72.
56. Stach, M.; Siriwardena, T. N.; Kohler, T.; van Delden, C.; Darbre, T.; Reymond, J. L., Combining topology and sequence design for the discovery of potent antimicrobial peptide dendrimers against multidrug-resistant Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2014, 53 (47), 12827-31.
57. Janiszewska, J.; Swieton, J.; Lipkowski, A. W.; Urbanczyk-Lipkowska, Z., Low molecular mass peptide dendrimers that express antimicrobial properties. Bioorganic & Medicinal Chemistry Letters 2003, 13 (21), 3711-3713.
58. Scorciapino, M. A.; Serra, I.; Manzo, G.; Rinaldi, A. C., Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications. Int J Mol Sci 2017, 18 (3).
59. Chongsiriwatana, N. P.; Patch, J. A.; Czyzewski, A. M.; Dohm, M. T.; Ivankin, A.; Gidalevitz, D.; Zuckermann, R. N.; Barron, A. E., Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci U S A 2008, 105 (8), 2794-9.
60. Hayouka, Z.; Mortenson, D. E.; Kreitler, D. F.; Weisblum, B.; Forest, K. T.; Gellman, S. H., Evidence for phenylalanine zipper-mediated dimerization in the X-ray crystal structure of a magainin 2 analogue. J Am Chem Soc 2013, 135 (42), 15738-41.
61. Tew, G. N.; Scott, R. W.; Klein, M. L.; Degrado, W. F., De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 2010, 43 (1), 30-9.
62. Giuliani, A.; Rinaldi, A. C., Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 2011, 68 (13), 2255-66.
63. Scorciapino, M. A.; Rinaldi, A. C., Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics. Front Immunol 2012, 3, 171.
64. Muñoz-Bonilla, A.; Fernández-García, M., Polymeric materials with antimicrobial activity. Progress in Polymer Science 2012, 37 (2), 281-339.
65. Kenawy el, R.; Worley, S. D.; Broughton, R., The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 2007, 8 (5), 1359-84.
66. Gabriel, G. J.; Som, A.; Madkour, A. E.; Eren, T.; Tew, G. N., Infectious Disease: Connecting Innate Immunity to Biocidal Polymers. Mater Sci Eng R Rep 2007, 57 (1-6), 28-64.
67. Timofeeva, L.; Kleshcheva, N., Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol 2011, 89 (3), 475-92.
68. Mowery, B. P.; Lindner, A. H.; Weisblum, B.; Stahl, S. S.; Gellman, S. H., Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J Am Chem Soc 2009, 131 (28), 9735-45.
69. Palermo, E. F.; Vemparala, S.; Kuroda, K., Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules 2012, 13 (5), 1632-41.
70. Gabriel, G. J.; Madkour, A. E.; Dabkowski, J. M.; Nelson, C. F.; Nusslein, K.; Tew, G. N., Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 2008, 9 (11), 2980-3.
71. Thaker, H. D.; Cankaya, A.; Scott, R. W.; Tew, G. N., Role of Amphiphilicity in the Design of Synthetic Mimics of Antimicrobial Peptides with Gram-negative Activity. ACS Med Chem Lett 2013, 4 (5), 481-485.
72. Chan, D. I.; Prenner, E. J.; Vogel, H. J., Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 2006, 1758 (9), 1184-202.
73. Brogden, K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005, 3 (3), 238-50.
74. Chris Zhisheng Chen, S. L. C., Interactions between dendrimer biocides and bacterial membranes. 2002.
75. de Brabander-van den Berg, E. M. M.; Meijer, E. W., Poly(propylene imine) Dendrimers: Large-Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations. Angewandte Chemie International Edition in English 1993, 32 (9), 1308-1311.
76. Newkome, G. R.; Moorefield, C. N.; Vgtle, F., Dendritic Molecules: Concepts, Syntheses, Perspectives. 1996.
77. Kim, C.; Jung, H.; Kim, Y. O.; Shin, C. S., Antimicrobial activities of amino acid derivatives of monascus pigments. FEMS Microbiol Lett 2006, 264 (1), 117-24.
78. Chen CZ, B.-T. N., Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL., Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. 2000.
79. Tam JP, L. Y., Yang JL., Antimicrobial dendrimeric peptides. 2002.
80. Lind, T. K.; Polcyn, P.; Zielinska, P.; Cardenas, M.; Urbanczyk-Lipkowska, Z., On the antimicrobial activity of various peptide-based dendrimers of similar architecture. Molecules 2015, 20 (1), 738-53.
81. Calabretta, M. K.; Kumar, A.; McDermott, A. M.; Cai, C., Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules 2007, 8 (6), 1807-11.
82. Jenssen, H.; Hamill, P.; Hancock, R. E., Peptide antimicrobial agents. Clin Microbiol Rev 2006, 19 (3), 491-511.
83. Ganewatta, M. S.; Tang, C., Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 2015, 63, A1-A29.
84. Wong, E. H.; Khin, M. M.; Ravikumar, V.; Si, Z.; Rice, S. A.; Chan-Park, M. B., Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers. Biomacromolecules 2016, 17 (3), 1170-8.
85. Vigliotta, G.; Mella, M.; Rega, D.; Izzo, L., Modulating antimicrobial activity by synthesis: dendritic copolymers based on nonquaternized 2-(dimethylamino)ethyl methacrylate by Cu-mediated ATRP. Biomacromolecules 2012, 13 (3), 833-41.
86. Lam, S. J.; O'Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G., Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol 2016, 1 (11), 16162.
87. Lam, S. J.; Wong, E. H.; O'Brien-Simpson, N. M.; Pantarat, N.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G., Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles. ACS Appl Mater Interfaces 2016, 8 (49), 33446-33456.
88. Chen, Y. F.; Shiau, A. L.; Chang, S. J.; Fan, N. S.; Wang, C. T.; Wu, C. L.; Jan, J. S., One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis. Acta Biomater 2017, 55, 283-295.
89. Jin, L.; Bai, X.; Luan, N.; Yao, H.; Zhang, Z.; Liu, W.; Chen, Y.; Yan, X.; Rong, M.; Lai, R.; Lu, Q., A Designed Tryptophan- and Lysine/Arginine-Rich Antimicrobial Peptide with Therapeutic Potential for Clinical Antibiotic-Resistant Candida albicans Vaginitis. J Med Chem 2016, 59 (5), 1791-9.