| 研究生: |
莊鑫堅 Chuang, Hsin-Chien |
|---|---|
| 論文名稱: |
P型電極氧化鎳薄膜之製備與其電性及光性之探討 Preparation of NiO thin films and investigation on electrical and optical property |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 歐姆接觸 、濺射 、薄膜 、氧化鎳 |
| 外文關鍵詞: | ohmic contact, sputtering, thin film, NiO |
| 相關次數: | 點閱:59 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明導電的p-type氧化鎳(NiO)薄膜有可能是p-type GaN的極佳歐姆接觸材料。在作為GaN歐姆接觸材料的應用上,我們希望得到具有高可見光穿透率及高導電率的氧化鎳薄膜。
本研究利用射頻反應性磁控濺鍍(RF reactive magnetron sputtering)系統,以不同的製程條件在康寧玻璃1737F基板上沈積氧化鎳薄膜,以探討濺鍍方法成長氧化鎳薄膜時各濺鍍參數如:射頻功率、基板溫度、濺鍍壓力與氧氣流量比,以及濺鍍完畢後熱處理條件對所沈積氧化鎳薄膜微結構及性質之影響。實驗分析上採用a-step量測膜厚,四點探針量測電性,可見光光譜儀量測透光率,X光繞射儀分析薄膜之結晶結構,SEM分析進行表面與截面型態觀察。
實驗結果顯示氧化鎳薄膜之電性與光性跟氧氣流量比及基板溫度有密切關連性。另外,過量的氧原子所引起的導電機構推測是氧的間隙原子。熱處理使得氧化鎳薄膜中不穩定之過量氧原子脫離薄膜,使得薄膜電阻率隨熱處理溫度之上升大幅提高,而因熱處理使氧化鎳薄膜之結晶結構較完美,使得可見光穿透率增加。
Nickel oxide films may be good ohmic contact material for p-type GaN. As for the ohmic contact electrode of GaN, nickel oxide films need to be prepared for better materials in high transmittance and conductivity.
By RF magnetron reactive sputtering, NiO thin films were deposited on Coring 1737F glass with various sputtering parameter in this study. The aim of this study is to find out how the depositing parameters, like RF power, substrate temperature, sputtering pressure, and oxygen flow ratio as well as annealing affect the microstructure and properties of the film. Film thickness was measured by an a-step profilometer. The resistivity was measured by a four probe method. The transmittance was measured by visible light spectrophotometer. The XRD patterns were used to analyze the crystal structure of the films, and SEM observations indicate the surface and cross section morphology of NiO films.
The results reveal that oxygen flow ratio and substrate temperature have strong influences on the electrical and optical properties of NiO films. We suppose that conductive mechanism affected by the interstitial oxygen atoms by lattice constant from XRD patterns. Heat treatment make unstable excess oxygen atoms break away from NiO structure.The effects result in that the resistivity and transmittance of NiO films increase with annealing temperature rise.
1. E. W. Williams and R. Hall, Luminescence and the Light Emitting Diode, (1977), 1.
2. 許招墉, 光電工學概論, 全華科技圖書股份有限公司, (1990), 131.
3. E. W. Williams and R. Hall, Luminescence and the Light Emitting Diode, (1977), 1.
4. S. Nakamura and G. Fasol, The Blue Laser Diodes (Springer, Heidelberg, 1997).
5. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phy. Lett. 64 (1994), 1687.
6. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys., Part2 34 (1995) L1332.
7. T. Mukai, D. Morita, and S. Nakamura, J. Cryst. Growth 189/190 (1998) L479.
8. T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys., Part2 37 (1998), L479.
9. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsuhia, H. Kiyoku, Y. Sugimto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN GaN AlGaN-based laser diodes grown on GaN substrates”, Appl. Phys. Lett. 72 (1998), 2014
10. 陳澤彭,高亮度發光二極體,電子月刊Vol. 15 (1996) 71-76.
11. 原田衛,山下勝之,藍雷射擴大光學磁碟容量至15 GB,NIKKEI ELECTRONICS ASIA, April, 1998.
12. S. Nakamura and Gerhard Fasol, The Blue Laser Diode, ISBN-540-61590-3 (1997) 196-197.
13. M. S. Shur and M. Asif Khan, Mater. Res. Bull. 22 (1997) 44.
14. M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett. 60 (1992), 2917.
15. Strategies Unlimited, Gallium Nitride-Technology Status and Applications Analysis (1997) 3.
16. Strategies Unlimited, Gallium Nitride-Technology Status and Applications Analysis (1997) 21.
17. M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett. 62 (1993), 1786.
18. H. Amano, M. Kito, K. Hiramatsu, and I. Aksaki, Inst. Phys. Conf. Ser. 106. (1989), 725.
19. H. Amano, M. Kito, K. Hiramatsu, and I. Aksaki, Jpn. J. Appl. Phys.28, (1989) L2112.
20. Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. (1996) 1672.
21. S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and K. L. Wang, Electron. Lett. 34, (1998) 2354.
22. L. L. Smith, R. F. Davis, M. J. Kim, R. W. Carpenter, and Y. Huang, “Microstructure, electrical properties, and thermal stability of Au-based ohmic contacts to p-GaN”, J. Mater. Res. 12 (1997), 2249.
23. K. V. Vassilevski, M.G. Rastegaeva, A. I. Babanin, I. P. Nikitina, and V. A. Dmitriev, “Ti/Ni ohmic contacts to n-type gallium nitride”, Materials Science & Engineering B: Solid-State Materials for Advanced Technology, B43 (1997), 292-295.
24. S. Wetzel; S. Yamaguchi; H. Sakai; H. Amano; I. Akasaki, Y. Yamaoka, Y. Kaneko, S. Takeuchi, S. Nakagawa, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect”, Applied Physics Letters 73 (1998), 1691.
25. D. J. King, L. Zhang, J. C. Ramer, A. Rice, K. J. Malloy, S. D. Hersee, L. F. Lester, and M. Wood, “Auger and electrical analysis of Pt/Au and Ni/Au contacts to p-GaN”, Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS v. 2 (1998), 53-54.
26. X. A. Cao, S. J. Pearton, F. Ren, and J. R. Lothian, “Thermal stability of W and WSix contacts on p-GaN”, Appl. Phys. Lett. 73 (1998), 942.
27. K. J. Kim, J. J. Ho, J. W. Lee, J. Y. Park, T. Kim, I. Jung, B. T. Lee, and J. L. Lee, “Microstructural and electrical investigation of Ni/Au ohmic contact on p-type GaN”, Journal of Electronic Materials. 30 (2001), L8-L12.
28. H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M.Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys 81 (1997), 1315.
29. J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, M. J. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “Effect of thermal annealing on the Ni/Au contact of p-type GaN”, Journal of Applied Physics, 83 (1998), 3172.
30. J. T. Trexler, S. J. Pearton, P H. Holloway, M. G. Mier, K. R. Evans and R. F. Karlicek, “Comparison of Ni/Au, Pd/Au, Cr/Au metallizations for ohmic contacts to p-GaN”, Mat. Res. Soc. Symp. Proc. 449 (1997), 1091.
31. T. Kim, J. Khim, S. Chae, and T. Kim, “Low resistance contacts to p-type GaN”, Mat. Res. Soc. Symp. 468 (1997), 427.
32. J. S. Jang, H. G. Kim, K. H. Park, C. S. Um, I. K. Han, S. H. Kim, H. K. Jang, and S. J. Park, “Formation of Ni/Pt/Au ohmic contacts to p-GaN”, Materials Research Society Symposium Proceedings, v. 2 (1997), 1053-1058.
33. D. H. Youn, M. Hao, H. Sato, T. Sugahara, Y. Naoi, and S. Sakai, “Ohmic contact to p-type GaN”, Jpn. J. Apl. Phys. 37 (1998), 1768.
34. M. E. Lin, F. Y. Huang, and H. Morkoc, “Nonalloyed ohmic contacts on GaN using InN/GaN short-period superlattices”, Appl. Phys. Lett. 64 (1997), 2557.
35. 電子資訊, 第6卷, 第1期 (2000) 40.
36. Gopchandran KG, Joseph B, Abraham JT, Koshy P, Vidyan VK. Vacuum 1997;48:547.
37. Koshy P, Mukherjee PS, Warrier KGK, Vaidyan VK. J Mater Sci Lett 1995:14:440.
38. Benny J, Gopchandran KG, Thomas PV, Koshy P, Vaidyan VK. Mater Chem Phys 1999;58:71.
39. Chopra KL, Major S, Pandya DK. Thin Solid Films 1983;102:1.
40. Y. Tawada, H. Okamoto and Y. Hamakawa, Appl. Phys. Lett., 39(1981)237.
41. D. Kruangam, T. Endo, W. Guang-Pu, H. Okamoto and Y. Hamakawa, Jpn. J. Appl. Phys., 24 (1985) L806.
42. M. Kimmel, M. Lux-steiner, M. Vogt and E. B. Ucher, J. Appl. Physl., 64 (1988) 1560.
43. E. Fujii, A. Tomozawa, H. Torii, and R. Takayama, ”Preferred orientations of NiO films prepared by plasma-enhanced metalorganic chemical vapor deposition”, Jpn. J. Appl. Phys., 35 (1996), L328.
44. H. Kumagai, M. Matsumoto, K. Toyoda, and M. Oobara, ” Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions”, Journal of Materials Science Letters, 15 (1996), 1081.
45. H. Sato, T. Minami, S. Takata, and T. Yamada, ”Transparent conducting p-type NiO thin films prepared by magnetron sputtering”, Thin Solid Films, 236 (1993), 27.
46. M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S. Yamda, “Preparation and electrochromic properties of RF-sputtered NiOx films prepared in Ar/O2/H2 atmosphere”, Jpn. J. Appl. Phys., 33 (1994), 6656.
47. D. Adler and J. Feinleib, “Band structure of magnetic semiconductors”, Phys. Rev. B, 2 (1970), 3112.
48. I. G. Austin, N. F. Mott, “ Polarons in crystalline and non-crystalline materials”, Adv. In Phys, Vol. (1969), 80.
49. P. Puspharajah, S. Radhakrishna and A. K. Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique”, Journal of Materials Science, Vol. 32, iss. 11 (1997), 3001-3006.
50. W. C. Yeh and M. Matsumura, “Chemical Vapor Deposition of Nickel Oxide Films from Bis-p- Cyclopentadienyl-Nickel”, Japanese Journal of Applied Physics – Part 1 Regular Papers and Short Notes, vol. 36, iss. 11 (1997), 6884-6887.
51. C. M. Lampert, “Electrochromic materials and devices for energy efficient windows”, Solar Energy Mater. 11 (1987), 1.
52. C. M. Lampert, T. R. Omstead and P. C. Yu, “Chemical and optical properties of electrochromic nickel oxide films”, Solar Energy Mater. 14 (1986), 161.
53. P. C. Yu, G. Nazri and C. M. Lampert, “Spectoscopic and electrochemical studies of electrochromic hydrated nickel oxide films”, Solar Energy Mater. 16 (1987), 1.
54. M. K. Carpenter, R. S. Conell and D. A. Corrigan, “Electrochromic properties of hydrous nickel oxide”, Solar Energy Mater. 16 (1987), 333.
55. P. Delichere, S. Joiret, A Hugot-le Goff, K. Bange and B. Hetz, “EXAFS study of passive films on Ni and Ni-Mo alloy electrodes”, J. Electrochem. Soc. 135 (1988), 1856.
56. P. R. Michel, A. Chaiken, K. Y. Kim, and L. E. Johnson, “NiO exchange bias layers grown by direct ion beam sputtering of a nickel oxide target”, IEEE Transactions on Magnetics, 325 (1996), 4651.
57. I. C. Faria, M. Kleinke, A. Gorenstein, M. C. A. Fantini, and M. H. Tabacniks, “Toward efficient electrochromic NiOx films: a study of microstructure, morphology, and stoichiometry of radio frequency sputtered films”, Journal of the Electrochemical Society, 1476 (2000), 2380.
58. M. Moriya, T. Kobayashi, and T. Goto, “Charcteristics of a NiO barrier layer for high-Tc superconducting tunnel junction”, IEEE Transactions on Applied Superconductivity, 52 (1995), 2358.
59. J.L. Vossen, “transparent Conducting Films”, Physics of Thin Films, 9 (1977), 1-64.
60. 李玉華, “透明導電膜及其應用”, 科儀新知, 12卷第一期, (1980), 94-102.
61. 楊明輝, “金屬氧化物透明導電材料的基本原理”, 工業材料雜誌, 179期 (2001) 134-144.
62. B. Chapman, Glow Discharge Processes, John Wiley & Sons, New York, 1980, 177.
63. B. Chapman, Glow Discharge Processes, John Wiley & Sons, New York, 1980, 49.
64. 楊錦昌, “基礎濺鍍電漿”, 電子發展月刊, 68期 (1983), 13-40.
65. M. Ohring, The Materials Science of Thin Films, Academic Press, New Jersey, 1992, 107.
66. W. D. Westwood, Reactive Sputter Deposition, Handbook of Plasma Processing Technology, Springer-Verlag Berlin Heidelberg, U.S.A, 1992, Ch. 9.
67. M. Ohring, The Materials Science of Thin Films, Academic Press, New Jersey, 1992, 118-133.
68. B. Chapman, Glow Discharge Processes, John Wiley & Sons, New York, 202.
69. H. L. Hartnagel, A. K. Jain and C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Philadelphia, 1995, 22.
70. L. Davis, “Properties of Transparent Conducting Oxides Deposited at Room Temperature”, Thin Solid Films, 236 (1993), 1-5.
71. K. N. Tu, J. W. Mayer and L. C. Feldman, Electronic Thin Film Science, Macmillan Publishing Company, New York, 1992.
72. M. Ohring, The Materials Science of Thin Films, Academic Press, New Jersey, 1992, 197,224.
73. B. A. Movchan and A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zir-conium dioxide”, Phys. Met. Metallogr. , 28 (1969), 83.
74. 楊哲勛, 射頻磁控濺鍍氧化鎳薄膜製程條件對顯微結構與電性及光性之影響研究, 國立成功大學材料科學及工程學系碩士論文, 2001, 43.
75. F. Shinoki and A. Itoh, “Mechanism of RF reactive sputtering”, J. Appl. Phys., 46, [8], 1975, 3381-3384.
76. J. A. Thornton, “High rate thick film growth”, Ann. Rev. Mater. Sci., 7 (1977), 239.
77. B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. Prabhakara Rao, V. K. Vaidyan, “Preparation of transparent and semiconducting NiO films”, Vacuum 68 (2003) 149-154.
78. Zhang Xuping, and Chen Guoping “The microstructure and electrochromic properties of nickel oxide films deposited with different substrate temperatures”, The solid films (1997) 53-56.
79. E. Antolini, J. Mater. Sci., 27 (1992), 3335.
80. O. Kohmoto, H.Nakagawa, Y. I.sagawa, and A. Chayahara, “Effect of heat treatment on the oxygen content and resistivity in sputtered NiO films”, Joural of Magnetic Materials 226-230 (2001) 1629-1630.
81. H. Sato, T. Minami, S. Takata, and T. Yamada, ”Transparent conducting p-type NiO thin films prepared by magnetron sputtering”, Thin Solid Films, 236 (1993), 27.