簡易檢索 / 詳目顯示

研究生: 翁弘諺
Weng, Hung-Yen
論文名稱: 整合邊緣計算與機器學習提升網路效率與性能
Enhancing Network Efficiency and Performance through the Integration of Edge Computing and Machine Learning
指導教授: 賴槿峰
Lai, Chin-Feng
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 67
中文關鍵詞: 車聯網 (IoV)移動邊緣計算 (MEC)霧計算雲計算軟體定義無線網路 (SDWN)協作快取
外文關鍵詞: Internet of Vehicles (IoV), Mobile Edge Computing (MEC), fog computing, cloud computing, software-defined wireless network (SDWN), collaborative caching
相關次數: 點閱:116下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討了針對 5G 網路和車聯網 (IoV) 的網路最佳化策略。研究內容包括在搭配移動邊緣計算 (MEC) 伺服器的 5G 網路中,透過快取管理來最佳化 MPEG-DASH 視訊串流的技術。此外,本文解決了在霧計算架構中網路地址轉換 (NAT) 的負載平衡問題,並提出了一種新穎方法,採用支持向量機 (SVM) 模型。而隨後更進一步整合了霧計算與雲計算,提出了一種軟體定義無線網路 (SDWN) 架構,以提升車聯網傳輸效率。除此之外,引入了基於 Q 學習的協作快取算法 (Q-LCCA) 用於蜂窩網路。結論中特別強調了這些方法在 5G 和物聯網 (IoT) 背景下,對於提升網路性能、減少延遲並改善用戶體驗的重要性。

    This thesis explores network optimization strategies for 5G networks and the Internet of Vehicles (IoV). It delves into optimizing MPEG-DASH video streaming through cache management in 5G networks with Mobile Edge Computing (MEC) servers. It also addresses load balancing for Network Address Translation (NAT) traversal in fog computing architectures, proposing a novel approach using a Support Vector Machine (SVM) model. The thesis further explores enhancing IoV transmission efficiency by integrating fog computing and cloud computing, proposing a software-defined wireless network (SDWN) architecture. Additionally, it introduces a Q-learning-based collaborative caching algorithm (Q-LCCA) for cellular networks. The thesis concludes by highlighting the significance of these approaches in enhancing network performance, reducing latency, and improving user experience in the context of 5G and IoT.

    MPEG-DASH Video Streaming and Cache Management 1 Live MPEG‐DASH video streaming cache management 2 System Architecture 2 System Design 3 Protocol Design 4 Cache management 4 Methods and Results 7 Optimizing Cache Management with Integer Linear Programming: 7 Problem Formulation: 7 Transformation to 0/1 Knapsack Problem: 7 Dynamic Programming Algorithm: 7 Time Complexity and Performance: 8 Advantages of our Approach: 8 Applications: 9 Conclusion: 9 Load Balancing for NAT Traversal in Fog Computing 9 Introduction 10 Related Works 11 Resource Load Balancing 12 A Novel NAT-based Approach for Resource Load Balancing 13 Approach Architecture 13 Cloud Layer: 13 Fog Layer: 13 User Layer: 14 Approach Work-flow 15 End User 15 Scenario of TURN Server Relocation: 16 Proposed Mechanism for Load Balancing: 16 Advantages of the Approach: 16 Signaling Server 17 Experiment Results 19 Conclusion 20 Enhancing IoV Transmission Efficiency Through Fog Computing and Cloud Integration 21 Introduction 21 Rapid Evolution of the Internet of Vehicles (IoV): Implications for Data Generation and Processing 21 Intelligent Transportation Systems (ITS): Facilitating Extensive Message Exchanges and Low Latency 22 Proliferation of IoV Applications: Data Storage and Processing Challenges 23 Edge Computing and Software-Defined Networking (SDN): Solutions for IoV Applications 23 Recent Developments in Overlay Networks and Middleware for IoV 24 Proposed Architecture and Algorithms for Optimizing Multimedia and Sensing Data Transmission in IoV 24 Related works 25 System model and problem definition 26 Load balancing status 28 Transmission path loss 29 Transmission time 30 Service time and waiting time 31 Problem definition 32 System architecture 33 Proposed algorithms 34 Performance evaluation 36 Simulation Setup 36 Simulation Results 36 Discussion 39 Conclusion 40 Q-Learning for Collaborative Caching in Cellular Networks 41 Problem Formulation 42 Network Architecture 42 System Model 43 Performance Evaluation 45 Simulation Setup 45 Simulation Results 46 Conclusion 49 Future Work 50 References 51

    Hung‐Yen W, Ren‐Hung H, Chin‐Feng L (2020), Live MPEG‐DASH video streaming cache management with cognitive mobile edge computing. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02549-z
    Arora S, Bala A (2020) An ensembled data frequency prediction based framework for fast processing using hybrid cache optimization. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-01973-5
    ETSI GR NFV (2020) System architecture of the MPEG-DASH live video streaming over 5G with MEC servers.003, V1.5.1 [online]. https://www.etsi.org/deliver/etsi_gr/NFV/001_099/003/01.05.01_60/gr_NFV003v010501p.pdf. Accessed 24 Aug 2020
    Foukas X, Patounas G, Elmokashf A, Marina MK (2017) Network slicing in 5G: survey and challenges. IEEE Commun Mag 55(5):94–100
    Gomes AS et al (2017) Edge caching with mobility prediction in virtualized LTE mobile networks. Future Gener Comput Syst 70:148–162
    Kim J et al (2020) A context-aware adaptive algorithm for ambient intelligence DASH at mobile edge computing. J Ambient Intell Human Comput 11:1377–1385. https://doi.org/10.1007/s12652-018-1049-z
    Nivedita V, Nandhagopal N (2020) Improving QoS and efficient multi-hop and relay based communication frame work against attacker in MANET. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-01787-5
    Park SG, Shin YS, Song PJ (2013) LTE-advanced mobility performance enhancement in dense small cell environment. In: IEEE ICT Convergence. IEEE, pp 262–267
    Thomas E, Deventer MV, Stockhammer T, Begen AC, Champel ML, Oyman O (2016) Applications and deployments of server and network assisted DASH (SAND). In: IBC 2016 Conference. IET, https://doi.org/https://doi.org/10.1049/ibc.2016.0022
    Zhang Y (2019) A cooperative caching and transmission mechanism towards QoE-aware for surveillance video based on cloud computing environment. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-019-01519-4
    Chin-Feng L, Hung-Yen W, Hao-Yu C, Yueh-Min H (2021), A Novel NAT-based Approach for Resource Load Balancing in Fog Computing Architecture. Journal of Internet Technology. Vol 22, No 3 (2021)
    Rosenberg J (2010), Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols, IETF, RFC5245, April, 2010.
    Mahy R, Matthews P, Rosenberg J (2010), Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN), IETF, RFC5766, April, 2010.
    Apu K I Z, N. Mahmud, Hasan F, Sagar S H (2017), P2P Video Conferencing System Based on WebRTC, in IEEE International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 2017, pp. 557-561.
    Tam K, Goh H (2002), Session initiation protocol, in 2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT’02., Bankok, Thailand, 2002, pp. 1310-1314.
    Hautakorpi J, Camarillo G, Penfield R, Hawrylyshen A, Bhatia M (2010), Requirements from Session Initiation Protocol (SIP) Session Border Control (SBC) Deployments, IETF, RFC5853, April, 2010.
    Rathore M M, Son H, Ahmad A, Paul A, Jeon G (2018), Real-time Big Data Stream Processing Using GPU with Spark Over Hadoop Ecosystem, International Journal of Parallel Programming, Vol. 46, No. 3, pp. 630-646, June, 2018.
    Shu B, Chen H, Sun M (2017), Dynamic Load Balancing and Channel Strategy for Apache Flume Collecting Real-Time Data Stream, in 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 2017, pp. 542-549.
    Masuda-Katsuse I (2017), Remote Articulation Test System based on WebRTC, in Proc. Interspeech 2017, Stockholm, Sweden, 2017, pp. 4030-4031.
    She H, Wittenberg O, Warren I (2017), An Ad Hoc Broadcasting Application by Way of Mobile Devices, in Proceedings of the Australasian Computer Science Week Multiconference, Geelong, Australia, 2017, Article No. 21.
    Wei-Che C, Hung-Yen W, Chin-Feng L, Zhang F, Han-Chieh C, Ying H (2019), A SFC-based access point switching mechanism for Software-Defined Wireless Network in IoV. Future Generation Computer Systems 98 (2019) 577–585
    Chen M, Tian Y, Fortino G, Zhang J, Humar I (2018), Cognitive Internet of vehicles, Comput. Commun. 120 (2018) 58–70.
    Zhang Y, Chen M, Guizani N, Wu D, Leung V C (2017), SOVCAN: Safety-oriented vehicular controller area network, IEEE Commun. Mag. 55 (8) (2017) 94–99.
    Salahuddin M A, Al-Fuqaha A, Guizani M (2015), Software-defined networking for rsu clouds in support of the internet of vehicles, IEEE Internet of Things J. 2 (2) (2015) 133–144.
    Chen M, Li W, Hao Y, Qian Y, Humar I (2018), Edge cognitive computing based smart healthcare system, Future Gener. Comput. Syst. 86 (2018) 403–411.
    Ren J, Guo H, Xu C, Zhang Y (2017), Serving at the edge: A scalable iot architecture based on transparent computing, IEEE Netw. 31 (5) (2017) 96–105.
    Alouache L, Nguyen N, Aliouat M, Chelouah R (2018), Toward a hybrid SDN architecture for v2v communication in iov environment, in: Proceedings of Fifth International Conference on Software Defined Systems, SDS, IEEE, 2018, pp. 93–99.
    Martins J, Ahmed M, Raiciu C, Olteanu V, Honda M, Bifulco R, Huici F (2014), Clickos and the art of network function virtualization, in: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, USENIX Association, 2014, pp. 459–473.
    Ren H, Li X, Geng J, Yan J (2016), A SDN-based dynamic traffic scheduling algorithm, in: Proceedings of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC, IEEE, 2016, pp. 514–518.
    Chien W C, Lai C F, Cho H H, Chao H C (2018), A SDN-SFC-based service-oriented load balancing for the IoT applications, J. Netw. Comput. Appl. 114 (2018) 88–97.
    Thai M T, Lin Y D, Lin P C, Lai Y C (2017), Hash-based load balanced traffic steering on softswitches for chaining virtualized network functions, in: Proceedings of IEEE International Conference on Communications, ICC, IEEE, 2017, pp. 1–6.
    Rangisetti A K, Baldaniya H B, Kumar P, Tamma B R (2014), Load-aware hand-offs in software defined wireless LANs, in: Proceedings of IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob, IEEE, 2014, pp. 685–690.
    Huang C, Lu R, Choo K K R (2017), Vehicular fog computing: architecture, use case, and security and forensic challenges, IEEE Commun. Mag. 55 (11) (2017) 105–111.
    Wei-Che C, Hung-Yen W, Chin-Feng L (2020), Q-learning based collaborative cache allocation in mobile edge computing. Future Generation Computer Systems 102 (2020) 603–610.
    Stergiou C, Psannis K E, Kim B G, Gupta B (2018), Secure integration of IoT and cloud computing, Future Gener. Comput. Syst. 78 (2018) 964–975.
    Varghese B, Buyya R (2018), Next generation cloud computing: New trends and research directions, Future Gener. Comput. Syst. 79 (2018) 849–861.
    Abbas N, Zhang Y, Taherkordi A, Skeie T (2018), Mobile edge computing: A survey, IEEE Internet Things J. 5 (1) (2018) 450–465.
    Chen M, Li W, Fortino G, Hao Y, Hu L, Humar I (2019), A dynamic service migration mechanism in edge cognitive computing, ACM Trans. Internet Technol. 19 (2) (2019) 30.
    Chen M, Miao Y, Hao Y, Hwang K (2017), Narrow band internet of things, IEEE Access 5 (2017) 20557–20577.
    Basta A, Kellerer W, Hoffmann M, Morper H J, Hoffmann K (2014), Applying NFV and SDN to LTE mobile core gateways, the functions placement problem, in: Proceedings of the 4th Workshop on All Things Cellular: Operations, Applications, & Challenges, 2014, 33–38.
    Bo H, Vijay G, Lusheng J, Seungjoon L (2015), network function virtualization: Challenges and opportunities for innovations, IEEE Commun. Mag. 53 (2) (2015) 90–97.
    Shalimov A, Zuikov D, Zimarina D, Pashkov V, Smeliansky R (2013), Advanced study of SDN/OpenFlow controllers, in: Proceedings of the 9th Central & Eastern European Software Engineering Conference in Russia, 2013, p. 1.
    Yan S, et al. (2017), Field trial of machine-learning-assisted and SDN-based optical network planning with network-scale monitoring database, in: Proceedings of 2017 European Conference on Optical Communication, ECOC, 2017, pp. 1–3.
    Chen M, Hao Y, Lin K, Yuan Z, Hu L (2018), Label-less learning for traffic control in an edge network, IEEE Netw. 32 (6) (2018) 8–14.
    King G, Zeng L (2001), Logistic regression in rare events data, Political Anal. 9 (2) (2001) 137–163.
    Kaelbling L P, Littman M L, Moore A W (1996)), Reinforcement learning: A survey, J. Artif. Intell. Res. 4 (1996) 237–285.
    Ndikumana A, Ullah S, LeAnh T, Tran N H, Hong C S (2017), Collaborative cache allocation and computation offloading in mobile edge computing, in: Proceeding of 2017 19th Asia-Pacific Network Operations and Management Symposium, APNOMS, 2017, pp. 366–369.
    Cui Y, He W, Ni C, Guo C, Liu Z (2017)), Energy-efficient resource allocation for cache-assisted mobile edge computing, in: Proceeding of 2017 IEEE 42nd Conference on Local Computer Networks, LCN, 2017, pp. 640–648.
    He W, Su Y, Huang L, Zhao Y (2018)), Research on Streaming Media Cache Optimization Based on Mobile Edge Computing, in: Proceeding of 2018 13th International Conference on Computer Science & Education, ICCSE, 2018, pp. 1–6.
    Tan Y, Han C, Luo M, Zhou X, Zhang X (2018), Radio network-aware edge caching for video delivery in mec-enabled cellular networks, in: Proceed-ing of 2018 IEEE Wireless Communications and Networking Conference Workshops, WCNCW, 2018, pp. 179–184.
    Chien W C, Lai C F, Chao H C (2019), Dynamic resource prediction and allocation in c-ran with edge artificial intelligence, IEEE Trans. Ind. Inf. (2019) http://dx.doi.org/10.1109/TII.2019.2913169.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE