簡易檢索 / 詳目顯示

研究生: 吳翊豪
Wu, Yi-Hao
論文名稱: 支援位元率失真度最佳化之H.264畫面間預測架構設計
H.264 Inter Prediction Architecture Design with Rate-Distortion Optimization
指導教授: 陳中和
Chen, Chung-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 畫面間預測多媒體處理器
外文關鍵詞: inter prediction, media processor
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • H.264/AVC是由JVT所制定的新一代視訊壓縮標準,它加入許多新的視訊壓縮技術,例如變動區塊大小的位移補償、二分之一及四分之一像素取樣、位移向量預測、多重參考畫面等,使壓縮率及影像品質比以住的壓縮標準更好。但相對來說,更好的壓縮效率代表著編碼過程需要更多的資料計算以及記憶體存取,所以不只是即時性編碼的硬體實現難度更高,電力的消耗也會大幅增加。
    在這篇論文中,我們針對H.264 baseline profile在影像編碼的部分,提出一個畫面間預測的硬體架構,支援H.264標準參考軟體所訂定的位元率失真度最佳化技術。論文中,針對大量資料計算及記憶體存取上做改進,在維持壓縮率及影像品質的前提下,希望能減低硬體上的電力消耗,並且使執行效率在可接受範圍內。最後,我們提出一個支援rate-distortion的inter prediction硬體架構設計,並且開發完成一個模擬H.264硬體架構設計的多執行緒軟體平台。

    H.264/AVC is a new generation video coding standard developed by Joint Video Team (JVT). A number of new technical developments have been adopted to increase compression efficiency and video quality. These include improved inter prediction design features such as variable block-size motion compensation, half-pixel and quarter-pixel sampling, motion vector prediction, multiple reference frames, and etc. However, the high coding efficiency comes at the more computing capacity and memory access in a hardware design. It increases difficulty of hardware realization in real-time multimedia and low power consumption system.
    This thesis proposes an architecture design of inter prediction of the H.264 baseline profile encoder. The design supports rate-distortion optimization in conformance with H.264 reference software. In this thesis, we aim to improve the computing capacity and memory access in the architecture design for reducing power consumption, and keep acceptable compression efficiency and video quality in real-time applications.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution of this thesis 3 1.3 Organization of this thesis 3 Chapter 2 Background 4 2.1 Overview of the H.264 standard 4 2.1.1 Variable block-size motion estimation 5 2.1.2 Motion vector prediction 6 2.1.3 Half-pixel and Quarter-pixel sampling 8 2.1.3.1 Luma half-pixel sampling 8 2.1.3.2 Luma quarter-pixel sampling 10 2.1.3.3 Chroma sub-pixel sampling 10 2.1.4 Rate-distortion optimization 11 2.1.4.1 Macroblock partitions prediction flow 11 2.1.4.2 Sub-macroblock partitions prediction flow 12 Chapter 3 Proposed Architecture 14 3.1 Inter prediction architecture design 14 3.1.1 Data computing capacity 15 3.1.2 Internal memory bandwidth 16 3.1.3 Rate-distortion optimization 17 3.2 Dual multi-cycle pipeline architecture 19 3.2.1 Current macroblock and reference window 20 3.2.2 Three stage multi-cycle pipeline 21 3.2.3 Macroblock prediction pipeline 22 3.2.4 Sub-macroblock prediction pipeline 23 3.3 Current macroblock and reference window 24 3.3.1 Current macroblock memory architecture 24 3.3.2 Reference window memory architecture 25 3.3.2.1 Two dimension interleaving 4×4 array memory 25 3.3.2.2 Two dimension address decoding and data reordering 27 3.3.3 Data pre-loading and supporting in pipeline 28 3.4 Look-ahead motion vector prediction 30 3.4.1 Macroblock prediction pipeline 31 3.4.2 Sub-Macroblock prediction pipeline 31 3.4.3 Look-ahead motion vector prediction 32 3.5 Luma integer-pixel motion estimation 35 3.5.1 Tri-point search algorithm 35 3.5.2 Tri-point search data reuse 37 3.5.3 Tri-point search architecture 39 3.6 Luma sub-pixel motion estimation 43 3.6.1 Two step closed search algorithm 43 3.6.2 Two step closed search architecture 46 Chapter 4 Simulation and Verification 49 4.1 Software simulation 49 4.2 Software/Hardware co-verification 51 Chapter 5 Experimental Results 52 5.1 Integer-pixel motion estimation 52 5.1.1 Search points in different sequence 52 5.1.2 Average PSNR and PSNR difference from FS 53 5.1.3 Average bitrate and bitrate difference ratio to FS 54 5.1.4 PSNR-bitrate comparison in different sequence 55 5.2 Sub-pixel motion estimation 57 5.2.1 Search points in different sequence 57 5.2.2 Average PSNR and PSNR difference from 2SFS 58 5.2.3 Average bitrate and bitrate difference ratio to 2SFS 59 5.2.4 PSNR-bitrate comparison in different sequence 60 5.3 Dual multi-cycle pipeline architecture 61 5.3.1 Average PSNR and PSNR difference from SW 61 5.3.2 Average bitrate and bitrate difference ratio to SW 62 5.3.3 PSNR-bitrate comparison 63 Chapter 6 Conclusion 64

    [1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC),” Mar. 2003.
    [2] Joint Video Team Reference Software JM 7.3, http://iphome.hhi.de/suehring/tml/download/, Aug. 2003.
    [3] T. Wiegand, G. J. Sullivan, G. Gjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding Standard,” IEEE Transaction on Circuits and Systems on Video Technology., Volume 13, Pages 560-576, Jul. 2003.
    [4] Iain E.G. Richardon, “H.264 and MPEG4 video compression: video coding for next generation multimedia”, John Wiley & Sons, Ltd. ISBN: 0-470-84837-5, 2003.
    [5] Y. W. Huang, T. C. Wang, B. Y. Hsieh, and L. G. Chen, “Hardware architecture design for variable block size motion estimation in MPEG-4 AVC/JVT/ITU-T H.264,” Proceedings of the 2003 International Symposium on Circuits and Systems, Volume 2, Pages II796-II799, May 2003.
    [6] S. Y. Chien, Y. W. Huang, C. Y. Chen, H. H. Chen, and L. G. Chen, “Hardware architecture design of video compression for multimedia communication systems,” IEEE Communications Magazine, Volume 43, Issue 8, Pages 122-131, Aug. 2005.
    [7] C. Y. Chen, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C. Wang, and L. G. Chen, “Analysis and architecture design of variable block size motion estimation for H.264/AVC,” IEEE Transaction on Circuits and Systems, Volume 53, Issue 3, Page(s):578-593, Mar. 2006.
    [8] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Transaction on Circuits and Systems for Video Technology, Volume 6, No. 3, Pages 313-317, Jun. 1996.
    [9] A. Wu and M. F. So, “An efficient VLSI implementation of four-step search algorithm,” IEEE International Conference on Electronics, Circuits and Systems, Volume 3, Pages 503-506, Sept. 1998.
    [10] S. Zhu and K. Ma, “A new diamond search algorithm for fast block-matching motion estimation,” IEEE Transaction on Image Processing, Volume 9, Pages 287-290, Feb. 2000.
    [11] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted center-biased diamond search algorithm for block motion estimation,” IEEE Transaction on Circuits and Systems for Video Technology, Volume 8, Pages 369-377, Aug. 1998.
    [12] X. Zhang, H. AI, R. Hu, D. Li, “A novel algorithm for sub-pixel block motion estimation,”, Proceedings of the 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Pages 587-590, Oct. 2004.
    [13] S. Yang, W. Wolf, and N. Vijaykrishnan, “Power and performance analysis of motion estimation based on hardware and software realizations,” IEEE Transaction on Computer, Volume 54, Issue 6, Pages 714-726, Jun. 2005.

    下載圖示 校內:2007-09-15公開
    校外:2007-09-15公開
    QR CODE