簡易檢索 / 詳目顯示

研究生: 張禾孟
Chang, Jose Ramon
論文名稱: 預測模型和深度學習用於量化人類健康
Predictive modelling and deep learning for quantifying human health
指導教授: 吳馬丁
Nordling, Torbjörn E. M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 196
中文關鍵詞: 深度學習人工神經網絡機器學習靜息態功能磁共振成像(rsfMRI)卷積自編碼器大腦年齡預測默認模式網絡(DMN)皮膚特徵追蹤
外文關鍵詞: Deep learning, Artificial neural networks, Machine learning, Resting-State Functional MRI (rsfMRI), Convolutional autoencoder, Brain age prediction, Default Mode Network (DMN), Skin feature tracking
相關次數: 點閱:63下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器學習和深度學習技術已成為解決各領域複雜挑戰的強大工具。這些方法之所以強大,是因為它們能夠從大型複雜數據集中提取模式和洞察,自動化決策過程,並隨著時間的推移不斷改進。它們使我們能夠觀察並量化普通人難以捕捉的數據模式,從而獲得更深入的見解和更準確的預測。

    本論文介紹了兩篇研究論文,這些論文利用這些方法解決了神經影像學和計算機視覺中量化人類健康的兩個不同但相互關聯的問題。

    第一項研究《Age prediction using resting-state functional MRI》解決了理解大腦老化的挑戰。通過在靜息態功能磁共振成像(rsfMRI)數據上使用最小絕對收縮和選擇算子(LASSO),我們確定了與大腦年齡最相關的預測性連接。在包含176名健康志願者的研究中,我們建立了一個參考模型,該模型顯著降低了預測誤差,並識別出異常老化模式,尤其是在默認模式網絡(DMN)中。研究中識別出39個預測性連接,並達到了2.48年的留一法平均絕對誤差。值得注意的是,我們的正常參考模型在幾乎所有成年受試者的預測中達到了已發表模型中最低的誤差,突出了與正常老化相關的預測性連接。這項工作對神經退行性疾病的早期檢測具有重要意義,提供了一種在認知症狀出現之前識別異常大腦老化的非侵入性方法,可能促進更早的干預和個性化治療策略。

    第二項研究《Skin feature point tracking using deep feature encodings》探討了用於健康監測應用的計算機視覺的進展。我們提出了一種新穎的流程,使用卷積堆疊自編碼器追蹤面部和皮膚特徵,這對於在心搏圖和帕金森病的運動退化分析中準確估算心率至關重要。我們的方法實現了0.6-3.3像素的追蹤誤差,在幾乎所有場景中優於傳統算法如SIFT、SURF和LK。此外,我們的方法是唯一未出現發散的,並且在大運動情況下相比最新的特徵匹配變壓器Omnimotion表現出更優越的性能。這項工作對改進非侵入性健康監測系統具有重要意義,提供了更準確的工具來追蹤微小的運動和心血管變化,從而實現帕金森病和心臟病等疾病的早期診斷和精確監測。

    這兩項研究共同展示了預測建模和深度學習對推進神經影像學和計算機視覺的影響。通過利用功能磁共振成像實現大腦異常老化的早期檢測,同時提升計算機視覺在追蹤運動功能微小變化中的能力,提供更準確、非侵入性的工具,用於神經退行性疾病和心血管疾病的診斷、量化和監測。

    Machine learning and deep learning techniques have emerged as powerful tools for addressing complex challenges across diverse domains. These methodologies are powerful because they extract patterns and insights from large and complex datasets, automate decision-making processes, and continuously improve over time. They enable us to observe and quantify patterns in data that a normal human would not be able to capture, leading to deeper insights and more accurate predictions. This dissertation presents two research papers that leverage these methodologies to tackle distinct yet interconnected problems in neuroimaging and computer vision for the quantification of human health.

    The first investigation, ``Age prediction using resting-state functional MRI," addresses the challenge of understanding brain aging. By employing the Least Absolute Shrinkage and Selection Operator (LASSO) on resting-state functional MRI (rsfMRI) data, we identify the most predictive correlations related to brain age. Our study, involving a cohort of 176 healthy volunteers, establishes a reference model that significantly reduces prediction errors and identifies abnormal aging patterns, particularly within the Default Mode Network (DMN). This study identifies 39 predictive correlations and achieves a leave-one-out mean absolute error of 2.48 years. Remarkably, our normal reference model attains the lowest prediction error among published models evaluated on adult subjects of almost all ages, highlighting correlations predictive of normal aging. The implications of this work extend to early detection of neurodegenerative diseases, providing a non-invasive method to identify abnormal brain aging before cognitive symptoms manifest, potentially allowing for earlier interventions and personalized treatment strategies.

    The second investigation, ``Skin feature point tracking using deep feature encodings," explores advancements in computer vision for health monitoring applications. We propose a novel pipeline using a convolutional stacked autoencoder to track facial and skin features, which are crucial for accurate heart rate estimation in ballistocardiography and motor degradation analysis in Parkinson's disease. Our method achieves tracking errors as low as 0.6-3.3 pixels, outperforming traditional algorithms like SIFT, SURF, and LK in almost all scenarios. Additionally, our approach is the only one that did not diverge and demonstrated superior performance compared to the latest state-of-the-art transformer for feature matching-- Omnimotion, especially under conditions of large motion.The implications of this work extend to improving non-invasive health monitoring systems, offering more accurate tools for tracking subtle motor and cardiovascular changes, and enabling early diagnosis and precise monitoring of diseases like Parkinson's and heart conditions.

    Together, these studies demonstrate the impact of predictive modeling and deep learning on advancing our understanding and capabilities in neuroimaging and computer vision. This is achieved by advancing neuroimaging by enabling the early detection of abnormal brain aging via functional MRI, while also improving computer vision capabilities for tracking subtle changes in motor functions, offering more accurate, non-invasive tools for diagnosing, quantifying, and monitoring neurodegenerative and cardiovascular diseases.

    摘要 ii Abstract iv Acknowledgments vi Table of Contents viii List of Tables ix List of Figures xi Nomenclature xiv Chapter 1 Introduction 1 1.1 Motivation and purpose 1 1.2 Publications 5 1.3 Outline 8 Chapter 2 Background 10 2.1 Deep learning 10 2.2 Convolutional neural networks 11 2.3 Autoencoders 14 2.4 Learning types and techniques for limited data 17 2.5 Feature tracking techniques 22 2.6 Constrained optimization techniques 34 Chapter 3 Present investigations 44 3.1 Age prediction using resting-state functional MRI (PAPER I) 44 3.2 Skin feature point tracking using deep feature encodings (PAPER II) 69 Chapter 4 Discussions 99 4.1 Validation of models 99 4.2 Outliers and overfitting 101 4.3 Edge effects 105 4.4 Benchmarking of models 106 4.5 All models are wrong, but some are useful 108 Chapter 5 Conclusions 111 References 115 Appendix A Age prediction using resting-state functional MRI 132 A.1 Feature selection using LASSO 132 A.2 Outlier selection algorithm 134 A.3 Metadata associations 136 A.4 Comparison candidate models 136 Appendix B Skin feature point tracking using deep feature encodings 143 B.1 Autoencoders for feature construction 143 B.2 Statistics of the training dataset 145 B.3 CIELAB color space 145 B.4 Normality tests for relabeling errors in x and y directions 149 B.5 Traditional computer vision methods 152 B.6 Weighted errors 162 B.7 Maximum errors 163 B.8 Tracking errors 165 B.9 Nearest neighbors to second nearest neighbor distance ratios 167 B.10 Nearest neighbors within an acceptable distance threshold 171 B.11 Spatial SSR landscape 171 B.12 Algorithm errors 172 B.13 Color desaturation effects on performance 173 B.14 Rotation and scaling effects on performance 175

    Aamodt, E. B., Alnaes, D., de Lange, A.-M. G., Aam, S., Schellhorn, T., Saltvedt, I., Beyer, M. K., and Westlye, L. T. (2023). Longitudinal brain age prediction and cognitive function after stroke. Neurobiology of Aging, 122:55–64.
    Abramowitz, M. and Stegun, I. A. (1988). Handbook of mathematical functions with formulas, graphs, and mathematical tables.
    Ahmine, Y., Caron, G., Mouaddib, E. M., and Chouireb, F. (2019). Adaptive lucas-kanade tracking. Image and Vis. Comput., 88:1–8.
    Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3):91–93.
    Alberry, H. A., Hegazy, A. A., and Salama, G. I. (2018). A fast sift based method for copy move forgery detection. Future Comput. and Inform. J., 3(2):159–165.
    Anderson, M., Motta, R., Chandrasekar, S., and Stokes, M. (1996). Proposal for a standard default color space for the internet–srgb. In Color and imaging conference, volume 1996, pages 238–245. Society for Imaging Science and Technology.
    Anjos, J. C. D., Matteussi, K. J., Orlandi, F. C., Barbosa, J. L., Silva, J. S., Bittencourt, L. F., and Geyer, C. F. (2023). A survey on collaborative learning for intelligent autonomous systems. ACM Computing Surveys, 56(4):1–37.
    Ansari, S. (2019). A review on sift and surf for underwater image feature detection and matching. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pages 1–4. IEEE.
    Ashyani, A., Lin, C.-L., Roman, E., Yeh, T., Kuo, T., Tsai, W.-F., Lin, Y., Tu, R., Su, A., Wang, C.-C., Tan, C.-H., and Nordling, T. E. M. (2022). Digitization of updrs upper limb motor examinations towards automated quantification of symptoms of parkinson’s disease. Manuscript in preparation.
    Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C., and Mechelli, A. (2021). Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine, 72.
    Baker, D. and Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294(5540):93–96.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J., and Szeliski, R. (2011). A database and evaluation methodology for optical flow. Int. J. of Comput. Vis., 92(1):1–31.
    Ballester, P. L., Suh, J. S., Ho, N. C., Liang, L., Hassel, S., Strother, S. C., Arnott, S. R., Minuzzi, L., Sassi, R. B., Lam, R. W., et al. (2023). Gray matter volume drives the brain age gap in schizophrenia: a shap study. Schizophrenia, 9(1):3.
    Banerjee, A. and Roy, K. (2023). Machine-learning-based similarity meets traditional qsar: “q-rasar"for the enhancement of the external predictivity and detection of prediction confidence outliers in an herg toxicity dataset. Chemometrics and Intelligent Laboratory Systems, 237:104829.
    Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., Marcus, D. S., Cairns, N. J., Xie, X., Blazey, T. M., et al. (2012). Clinical and biomarker changes in dominantly inherited alzheimer’s disease. New England Journal of Medicine, 367(9):795–804.
    Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In European conference on computer vision, pages 404–417. Springer.
    Beck, A. T., Steer, R. A., and Brown, G. (1996). Beck depression inventory–ii. Psychological assessment.
    Beis, J. S. and Lowe, D. G. (1997). Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In Proceedings of IEEE computer society conference on computer vision and pattern recognition, pages 1000–1006. IEEE.
    Bi, F., Ma, X., Chen, W., Fang, W., Chen, H., Li, J., and Assefa, B. (2019). Review on video object tracking based on deep learning. J. of New Media, 1(2):63.
    Bian, Z., Jabri, A., Efros, A. A., and Owens, A. (2022). Learning pixel trajectories with multiscale contrastive random walks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6508–6519.
    Biederman, I. (1987). Recognition-by-components: a theory of human image understanding. Psychological review, 94(2):115.
    Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic resonance in medicine, 34(4):537–541.
    Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint.
    Bouguet, J.-Y. (2001). Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation, 5(1-10):4.
    Box, G. E. and Draper, N. R. (1987). Empirical model-building and response surfaces. John Wiley & Sons.
    Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature verification using a” siamese” time delay neural network. Advances in neural information processing systems, 6.
    Brown, M. and Lowe, D. G. (2002). Invariant features from interest point groups. 4.
    Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., Mccandlish, S., Radford, A., Sutskever, I., and Openai, D. A. (2020). Los modelos de lenguaje son aprendices de pocas oportunidades. arXiv preprint.
    Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012). A naturalistic open source movie for optical flow evaluation. In European conference on computer vision, pages 611–625. Springer.
    Chang, C.-H., Chou, C.-N., and Chang, E. Y. (2017). Clkn: Cascaded lucas-kanade networks for image alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2213–2221.
    Chang, J. R. and Nordling, T. E. (2024a). Skin feature point tracking using deep feature encodings. International Journal of Machine Learning and Cybernetics, pages 1–19.
    Chang, J. R. and Nordling, T. E. M. (2021). Skin feature point tracking using deep feature encodings. arXiv preprint.
    Chang, J. R. and Nordling, T. E. M. (2024b). Unsupervised skin feature tracking with deep neural networks. arXiv preprint.
    Chen, C.-C., Lu, W.-Y., and Chou, C.-H. (2019). Rotational copy-move forgery detection using sift and region growing strategies. Multimed. Tools and Appl., 78(13):18293–18308.
    Cheng, C.-H., Wong, K.-L., Chin, J.-W., Chan, T.-T., and So, R. H. (2021a). Deep learning methods for remote heart rate measurement: A review and future research agenda. Sensors, 21(18):6296.
    Cheng, Y., Wang, H., Bao, Y., and Lu, F. (2021b). Appearance-based gaze estimation with deep learning: A review and benchmark. arXiv preprint arXiv:2104.12668.
    Chien, H.-J., Chuang, C.-C., Chen, C.-Y., and Klette, R. (2016). When to use what feature? sift, surf, orb, or a-kaze features for monocular visual odometry. In 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), pages 1–6. IEEE.
    Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258.
    Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discriminatively, with application to face verification. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), volume 1, pages 539–546. IEEE.
    Chum, L., Subramanian, A., Balasubramanian, V. N., and Jawahar, C. (2019). Beyond supervised learning: a computer vision perspective. J. of the Indian Inst. of Sci., 99(2):177–199.
    Chung, J. S., Senior, A., Vinyals, O., and Zisserman, A. (2017). Lip reading sentences in the wild. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3444–3453. IEEE.
    Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R., and Herrera, F. (2020). Deep learning in video multi-object tracking: A survey. Neurocomputing, 381:61–88.
    Cohen, J. R. and D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48):12083–12094.
    Colantoni, P., Thomas, J.-B., and Trémeau, A. (2016). Sampling cielab color space with perceptual metrics. International Journal of Imaging and Robotics, 16(3):1–22.
    Cole, J. H., Poudel, R. P., Tsagkrasoulis, D., Caan, M. W., Steves, C., Spector, T. D., and Montana, G. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage, 163(March):115–124.
    Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernandez, V., Munoz Maniega, S., Royle, N., Corley, J., Pattie, A., Harris, S. E., Zhang, Q., et al. (2018). Brain age predicts mortality. Molecular psychiatry, 23(5):1385–1392.
    Dai, J., Li, Y., He, K., and Sun, J. (2016). R-fcn: Object detection via region-based fully convolutional networks. In Advances in neural information processing systems, pages 379–387.
    Dai, W., Qiu, E., Lin, X., Zhang, S., Zhang, M., Han, X., Jia, Z., Su, H., Bian, X., Zang, X., et al. (2023). Abnormal thalamo–cortical interactions in overlapping communities of migraine: An edge functional connectivity study. Annals of Neurology, 94(6):1168–1181.
    de Lange, A.-M. G., Anaturk, M., Rokicki, J., Han, L. K., Franke, K., Alnaes, D., Ebmeier, K. P., Draganski, B., Kaufmann, T., Westlye, L. T., et al. (2022). Mind the gap: Performance metric evaluation in brain-age prediction. Human Brain Mapping, 43(10):3113–3129.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, and Li Fei-Fei (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255.
    Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
    Doersch, C., Gupta, A., Markeeva, L., Recasens, A., Smaira, L., Aytar, Y., Carreira, J., Zisserman, A., and Yang, Y. (2022). Tap-vid: A benchmark for tracking any point in a video. Advances in Neural Information Processing Systems, 35:13610–13626.
    Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D., and Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision, pages 2758–2766.
    Doucet, G. E., Bassett, D. S., Yao, N., Glahn, D. C., and Frangou, S. (2017). The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. American Journal of Psychiatry, 174(12):1214–1222.
    Douini, Y., Riffi, J., Mahraz, A. M., and Tairi, H. (2017a). An image registration algorithm based on phase correlation and the classical lucas–kanade technique. Signal, Image and Video Process., 11(7):1321–1328.
    Douini, Y., Riffi, J., Mahraz, M. A., and Tairi, H. (2017b). Solving sub-pixel image registration problems using phase correlation and lucas-kanade optical flow method. In 2017 Intelligent Systems and Computer Vision (ISCV), pages 1–5. IEEE.
    Doush, I. A. and Sahar, A.-B. (2017). Currency recognition using a smartphone: Comparison between color sift and gray scale sift algorithms. J. of King Saud University-Computer and Inf. Sci., 29(4):484–492.
    Dumoulin, V. and Visin, F. (2018). A guide to convolution arithmetic for deep learning. arXiv preprint.
    Elliott, M. L., Belsky, D. W., Knodt, A. R., Ireland, D., Melzer, T. R., Poulton, R., Ramrakha, S., Caspi, A., Moffitt, T. E., and Hariri, A. R. (2021). Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Molecular psychiatry, 26(8):3829–3838.
    Fischer, B. and Ramsperger, E. (1984). Human express saccades: extremely short reaction times of goal directed eye movements. Experimental brain research, 57:191–195.
    Franke, K. and Gaser, C. (2019). Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? Frontiers in neurology, page 789.
    Gao, G., Liu, L., Wang, L., and Zhang, Y. (2019). Fashion clothes matching scheme based on siamese network and autoencoder. Multimed. Syst., 25(6):593–602.
    Garcia, I., Bronte, S., Bergasa, L. M., Almazán, J., and Yebes, J. (2012). Vision-based drowsiness detector for real driving conditions. In 2012 IEEE Intelligent Vehicles Symposium, pages 618–623. IEEE.
    Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237.
    Getreuer, P. (2013). A survey of gaussian convolution algorithms. Image Processing On Line, 2013:286–310.
    Ghahramani, Z. (2004). Unsupervised Learning, pages 72–112. Springer Berlin Heidelberg, Berlin, Heidelberg.
    Gonneaud, J., Baria, A. T., Pichet Binette, A., Gordon, B. A., Chhatwal, J. P., Cruchaga, C., Jucker, M., Levin, J., Salloway, S., Farlow, M., et al. (2021). Accelerated functional brain aging in pre-clinical familial alzheimer’s disease. Nature communications, 12(1):5346.
    Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT Press, Cambridge, MA, U.S.A.
    Greve, D. N. and Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1):63–72.
    Guo, H., Yu, Y., Xiang, T., Li, H., and Zhang, D. (2017). The availability of wearable-device-based physical data for the measurement of construction workers’ psychological status on site: From the perspective of safety management. AUTOMATION IN CONSTRUCTION, 82:207–217.
    HajiRassouliha, A., Taberner, A. J., Nash, M. P., and Nielsen, P. M. (2018). Subpixel phase-based image registration using savitzky–golay differentiators in gradient-correlation. Comput. Vis. and Image Underst., 170:28–39.
    Hallquist, M. N., Hwang, K., and Luna, B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fmri preprocessing reintroduces noise and obscures functional connectivity. Neuroimage, 82:208–225.
    Harley, A. W., Fang, Z., and Fragkiadaki, K. (2022). Particle video revisited: Tracking through occlusions using point trajectories. In European Conference on Computer Vision, pages 59–75. Springer.
    Harris, C., Stephens, M., et al. (1988). A combined corner and edge detector. In Alvey vision conference, volume 15, pages 10–5244. Citeseer.
    Hassan, M. A., Malik, A. S., Fofi, D., Saad, N., Karasfi, B., Ali, Y. S., and Meriaudeau, F. (2017). Heart rate estimation using facial video: A review. Biomed. Signal Proces. and Control., 38:346–360.
    He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017a). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969.
    He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017b). Mask r-cnn. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 2980–2988.
    He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.
    He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer.
    Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural computation, 14(8):1771–1800.
    Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313:504–507.
    Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984). Boltzmann machines: Constraint satisfaction networks that learn. Carnegie-Mellon University, Department of Computer Science Pittsburgh, PA.
    Hinton, G. E., Srivastava, N., and Swersky, K. (2012). Lecture 6a- overview of mini-batch gradient descent. COURSERA: Neural Networks for Machine Learning, page 31.
    Hoang, D. and Wiegratz, K. (2023). Machine learning methods in finance: Recent applications and prospects. European Financial Management, 29(5):1657–1701.
    Holmgren, E. B. (1995). The pp plot as a method for comparing treatment effects. J. of the Am. Stat. Assoc., 90(429):360–365.
    Hopfield, J. J. (1995). Pattern recognition computation using action potential timing for stimulus representation. Nature, 376(6535):33–36.
    Hou, B. and Yan, R. (2019). Convolutional autoencoder model for finger-vein verification. IEEE Transactions on Instrumentation and Measurement, 69(5):2067–2074.
    Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
    Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708.
    Huang, Y., Zaas, A. K., Rao, A., Dobigeon, N., Woolf, P. J., Veldman, T., ??ien, N. C., McClain, M. T., Varkey, J. B., Nicholson, B., Carin, L., Kingsmore, S., Woods, C. W., Ginsburg, G. S., and Hero, A. O. (2011). Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genetics, 7(8).
    Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser, N. S., and Saripan, M. I. (2021). Diagnostic power of resting-state fmri for detection of network connectivity in alzheimer’s disease and mild cognitive impairment: A systematic review. Human Brain Mapping, 42(9):2941–2968.
    Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
    Jackson, P. (1986). Introduction to expert systems.
    James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statistical learning, volume 112. Springer.
    Jawinski, P., Markett, S., Drewelies, J., Düzel, S., Demuth, I., Steinhagen-Thiessen, E., Wagner, G. G., Gerstorf, D., Lindenberger, U., Gaser, C., et al. (2022). Linking brain age gap to mental and physical health in the berlin aging study ii. Frontiers in Aging Neuroscience, 14:791222.
    Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2):825–841.
    Jiang, H., Lu, N., Chen, K., Yao, L., Li, K., Zhang, J., and Guo, X. (2020). Predicting brain age of healthy adults based on structural mri parcellation using convolutional neural networks. Frontiers in neurology, 10:1346.
    Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T., Ellingsen, L. M., Walters, G. B., Gudbjartsson, D., Stefansson, H., Stefansson, K., and Ulfarsson, M. (2019). Brain age prediction using deep learning uncovers associated sequence variants. Nature communications, 10(1):5409.
    Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with alphafold. nature, 596(7873):583–589.
    Kang, S., Eum, S., Chang, Y., Koyanagi, A., Jacob, L., Smith, L., Shin, J. I., and Song, T.-J. (2022). Burden of neurological diseases in asia from 1990 to 2019: a systematic analysis using the global burden of disease study data. BMJ open, 12(9).
    Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., and Rupprecht, C. (2023). Cotracker: It is better to track together. arXiv preprint arXiv:2307.07635.
    Kasula, B. Y. (2023). Ai applications in healthcare a comprehensive review of advancements and challenges. International Journal of Managment Education for Sustainable Development, 6(6).
    Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., et al. (2017). The kinetics human action video dataset. arXiv preprint arXiv:1705.06950.
    Khan, A. A., Laghari, A. A., and Awan, S. A. (2021). Machine learning in computer vision: A review. EAI Trans. on Scalable Inf. Syst., page e4.
    Khan, N., McCane, B., and Mills, S. (2015). Better than sift? Mach. Vis. and Appl., 26(6):819–836.
    Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint, pages 1–15.
    Kirillov, A., Girshick, R., He, K., and Dollá r, P. (2019). Panoptic feature pyramid networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6399–6408.
    Knyaz, V. A., Vygolov, O., Kniaz, V. V., Vizilter, Y., Gorbatsevich, V., Luhmann, T., and Conen, N. (2017). Deep learning of convolutional auto-encoder for image matching and 3d object reconstruction in the infrared range. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 2155–2164.
    Kucikova, L., Goerdten, J., Dounavi, M.-E., Mak, E., Su, L., Waldman, A. D., Danso, S., Muniz-Terrera, G., and Ritchie, C. W. (2021). Resting-state brain connectivity in healthy young and middle-aged adults at risk of progressive alzheimer's disease. Neuroscience & Biobehavioral Reviews, 129:142–153.
    Lancaster, J., Lorenz, R., Leech, R., and Cole, J. H. (2018). Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Frontiers in Aging Neuroscience, 10(FEB):1–10.
    LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10):1995.
    LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2323.
    LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional networks and applications in vision. In Proceedings of 2010 IEEE international symposium on circuits and systems, pages 253–256. IEEE.
    Lee, A. X., Devin, C., Zhou, Y., Lampe, T., Bousmalis, K., Springenberg, J. T., Byravan, A., Abdolmaleki, A., Gileadi, N., Khosid, D., Fantacci, C., Chen, J. E., Raju, A., Jeong, R., Neunert, M., Laurens, A., Saliceti, S., Casarini, F., Riedmiller, M., Hadsell, R., and Nori, F. (2021a). Beyond pick-and-place: Tackling robotic stacking of diverse shapes. In Conference on Robot Learning (CoRL).
    Lee, J., Burkett, B. J., Min, H.-K., Senjem, M. L., Lundt, E. S., Botha, H., Graff-Radford, J., Barnard, L. R., Gunter, J. L., Schwarz, C. G., et al. (2022a). Deep learning-based brain age prediction in normal aging and dementia. Nature Aging, 2(5):412–424.
    Lee, P.-L., Kuo, C.-Y., Wang, P.-N., Chen, L.-K., Lin, C.-P., Chou, K.-H., and Chung, C.-P. (2022b). Regional rather than global brain age mediates cognitive function in cerebral small vessel disease. Brain Communications, 4(5).
    Lee, W., Seong, J. J., Ozlu, B., Shim, B. S., Marakhimov, A., and Lee, S. (2021b). Biosignal sensors and deep learning-based speech recognition: A review. Sensors, 21(4):1399.
    Li, C., Ishak, I., Ibrahim, H., Zolkepli, M., Sidi, F., and Li, C. (2023a). Deep learning-based recommendation system: Systematic review and classification. IEEE Access.
    Li, F.-F., Fergus, R., Perona, P., et al. (2006). One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell, 28(4):594–611.
    Li, H., Satterthwaite, T. D., and Fan, Y. (2018). Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks. In 2018 ieee 15th international symposium on biomedical imaging (isbi 2018), pages 101–104. IEEE.
    Li, Z., Usman, M., Tao, R., Xia, P., Wang, C., Chen, H., and Li, B. (2023b). A systematic survey of regularization and normalization in gans. ACM Computing Surveys, 55(11):1–37.
    Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., Lampe, L., Rahim, M., Abraham, A., Craddock, R. C., et al. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 148:179–188.
    Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988.
    Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755. Springer.
    Lindeberg, T. (1994). Scale-space theory: A basic tool for analyzing structures at different scales. Journal of applied statistics, 21(1-2):225–270.
    Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., and Pietikäinen, M. (2020). Deep learning for generic object detection: A survey. International Journal of Computer Vision, 128(2):261–318.
    Liu, T., Wang, L., Suo, D., Zhang, J., Wang, K., Wang, J., Chen, D., and Yan, T. (2022a). Resting-state functional mri of healthy adults: temporal dynamic brain coactivation patterns. Radiology, 304(3):624–632.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer.
    Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022b). A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11976–11986.
    Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60:91–.
    Lu, T., Zhou, Q., Fang, W., and Zhang, Y. (2021). Discriminative metric learning for face verification using enhanced siamese neural network. Multimedia Tools and Applications, 80:8563–8580.
    Lucas, B. and Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In IJCAI, volume 81.
    Madan, C. R. and Kensinger, E. A. (2018). Predicting age from cortical structure across the lifespan. European Journal of Neuroscience, 47(5):399–416.
    Maimon, O. Z. and Rokach, L. (2014). Data mining with decision trees: theory and applications, volume 81. World scientific.
    Manakov, I., Rohm, M., and Tresp, V. (2019). Walking the tightrope: an investigation of the convolutional autoencoder bottleneck. arXiv preprint.
    Manni, F., van der Sommen, F., Zinger, S., Shan, C., Holthuizen, R., Lai, M., Buström, G., Hoveling, R. J., Edström, E., Elmi-Terander, A., et al. (2020). Hyperspectral imaging for skin feature detection: Advances in markerless tracking for spine surgery. Applied Sciences, 10(12):4078.
    Mbunge, E. and Batani, J. (2023). Application of deep learning and machine learning models to improve healthcare in sub-saharan africa: Emerging opportunities, trends and implications. Telematics and Informatics Reports, page 100097.
    McLaren, K. (1976). Xiii–the development of the cie 1976 (l* a* b*) uniform colour space and colour-difference formula. J. of the Soc. of Dyers and Colour., 92(9):338–341.
    Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE transactions on pattern analysis and machine intelligence, 27(10):1615–1630.
    Millar, P. R., Luckett, P. H., Gordon, B. A., Benzinger, T. L., Schindler, S. E., Fagan, A. M., Cruchaga, C., Bateman, R. J., Allegri, R., Jucker, M., et al. (2022). Predicting brain age from functional connectivity in symptomatic and preclinical alzheimer disease. Neuroimage, 256:119228.
    Mohajer, B., Abbasi, N., Mohammadi, E., Khazaie, H., Osorio, R. S., Rosenzweig, I., Eickhoff, C. R., Zarei, M., Tahmasian, M., Eickhoff, S. B., et al. (2020). Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Human brain mapping, 41(11):3034–3044.
    Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., and Chertkow, H. (2005). The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4):695–699.
    Ni, A., Azarang, A., and Kehtarnavaz, N. (2021). A review of deep learning-based contactless heart rate measurement methods. Sensors, 21(11):3719.
    Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T. T., et al. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. The Lancet Public Health, 7(2)–e125.
    Niu, X., Zhang, F., Kounios, J., and Liang, H. (2020). Improved prediction of brain age using multimodal neuroimaging data. Human brain mapping, 41(6):1626–1643.
    Noh, H., Araujo, A., Sim, J., Weyand, T., and Han, B. (2017). Large-scale image retrieval with attentive deep local features. In Proceedings of the IEEE international conference on computer vision, pages 3456–3465.
    Nowlan, S. and Hinton, G. E. (1991). Adaptive soft weight tying using gaussian mixtures. Advances in Neural Information Processing Systems, 4.
    Oschmann, M., Gawryluk, J. R., and Initiative, A. D. N. (2020). A longitudinal study of changes in resting-state functional magnetic resonance imaging functional connectivity networks during healthy aging. Brain Connectivity, 10(7):377–384.
    Pardoe, H. R. and Kuzniecky, R. (2018). NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction. Neuroinformatics, 16(1):43–49.
    Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., and Sorkine-Hornung, A. (2016). A benchmark dataset and evaluation methodology for video object segmentation. In Computer Vision and Pattern Recognition.
    Plaut, D. C. and Hinton, G. E. (1987). Learning sets of filters using back-propagation. Computer Speech & Language, 2(1):35–61.
    Podgórski, P., Waliszewska-Prosół, M., Zimny, A., Sąsiadek, M., and Bladowska, J. (2021). Resting-state functional connectivity of the ageing female brain—differences between young and elderly female adults on multislice short tr rs-fmri. Frontiers in Neurology, 12:645974.
    Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., et al. (2011). Functional network organization of the human brain. Neuron, 72(4):665–678.
    Preische, O., Schultz, S. A., Apel, A., Kuhle, J., Kaeser, S. A., Barro, C., Gräber, S., Kuder-Buletta, E., LaFougere, C., Laske, C., et al. (2019). Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic alzheimer's disease. Nature medicine, 25(2):277–283.
    Pu, X., Fan, K., Chen, X., Ji, L., and Zhou, Z. (2015). Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing, 168:1173–1180.
    Ran, C., Yang, Y., Ye, C., Lv, H., and Ma, T. (2022). Brain age vector: A measure of brain aging with enhanced neurodegenerative disorder specificity. Human brain mapping, 43(16):5017–5031.
    Rawat, W. and Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29:2352–2449.
    Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788.
    Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7263–7271.
    Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint.
    Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91–99.
    Rothe, R., Timofte, R., and Gool, L. V. (2018). Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. of Comp. Vis., 126(2-4):144–157.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015a). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015b). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3):211–252.
    Sahu, S. K., Mokhade, A., and Bokde, N. D. (2023). An overview of machine learning, deep learning, and reinforcement learning-based techniques in quantitative finance: recent progress and challenges. Applied Sciences, 13(3):1956.
    Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520.
    Sanford, N., Ge, R., Antoniades, M., Modabbernia, A., Haas, S. S., Whalley, H. C., Galea, L., Popescu, S. G., Cole, J. H., and Frangou, S. (2022). Sex differences in predictors and regional patterns of brain age gap estimates. Human Brain Mapping, 43(15):4689–4698.
    Santos, C. F. G. D. and Papa, J. P. (2022). Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Computing Surveys (CSUR), 54(10s):1–25.
    Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich, A. (2020). Superglue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4938–4947.
    Satterthwaite, T. D., Elliott, M. A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M. E., Hopson, R., Jackson, C., Keefe, J., Riley, M., et al. (2014). Neuroimaging of the philadelphia neurodevelopmental cohort. Neuroimage, 86:544–553.
    Satterthwaite, T. D., Wolf, D. H., Calkins, M. E., Vandekar, S. N., Erus, G., Ruparel, K., Roalf, D. R., Linn, K. A., Elliott, M. A., Moore, T. M., et al. (2016). Structural brain abnormalities in youth with psychosis spectrum symptoms. JAMA psychiatry, 73(5):515–524.
    Schmid, C. and Mohr, R. (1997). Local grayvalue invariants for image retrieval. IEEE transactions on pattern analysis and machine intelligence, 19(5):530–535.
    Seber, G. A. and Lee, A. J. (2012). Linear regression analysis. John Wiley & Sons.
    Sewak, M. (2019). Deep reinforcement learning. Springer.
    Shi, W.-P. (2024). Evaluation of CoTracker Combined with Deep Feature Encoding for Tracking Local Skin Features. Master’s thesis, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan City, 701.
    Shi, W.-P. and Nordling, T. E. M. (2024). Combining old school autoencoder with cotracker for improved skin feature tracking. In The 19th IEEE Conference on Industrial Electronics and Applications (ICIEA 2024), IEEE Conference on Industrial Electronics and Applications (ICIEA 2024), Kristiansand, Norway. IEEE.
    Sikander, G. and Anwar, S. (2018). Driver fatigue detection systems: A review. IEEE Transactions on Intelligent Transportation Systems, 20(6):2339–2352.
    Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., and Moreno-Noguer, F. (2015). Discriminative learning of deep convolutional feature point descriptors. In Proceedings of the IEEE international conference on computer vision, pages 118–126.
    Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    Sinclair, D. A. and Oberdoerffer, P. (2009). The ageing epigenome: damaged beyond repair? Ageing research reviews, 8(3):189–198.
    Srivastava, M. S., Joshi, M. N., and Gaur, M. (2014). A Review Paper on Feature Selection Methodologies and Their Applications. IJCSNS, 14(5):78.
    Stofa, M. M., Zulkifley, M. A., and Zainuri, M. A. A. M. (2021). Skin lesions classification and segmentation: A review. International Journal of Advanced Computer Science and Applications, 12(10).
    Stojanov, S., Thai, A., Huang, Z., and Rehg, J. M. (2022). Learning dense object descriptors from multiple views for low-shot category generalization. Advances in Neural Information Processing Systems, 35:12566–12580.
    Su, P., Liu, D., Li, X., and Liu, Z. (2018). A saliency-based band selection approach for hyperspectral imagery inspired by scale selection. IEEE Geoscience and Remote Sensing Letters, 15(4):572–576.
    Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X. (2021). Loftr: Detector-free local feature matching with transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8922–8931.
    Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826.
    Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1701–1708.
    Takale, D. G., Mahalle, P. N., and Sule, B. (2024). Advancements and applications of generative artificial intelligence. Journal of Information Technology and Sciences, 10(1):20–27.
    Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep transfer learning. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27, pages 270–279. Springer.
    Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, pages 6105–6114. PMLR.
    Tareen, S. A. K. and Saleem, Z. (2018). A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In 2018 International conference on computing, mathematics and engineering technologies (iCoMET), pages 1–10. IEEE.
    Tarongi, J. M. and Camps, A. (2010). Normality analysis for rfi detection in microwave radiometry. Remote Sensing, 2(1):191–210.
    Teed, Z. and Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages 402–419. Springer.
    Thomas, G. B. and Finney, R. L. (1961). Calculus And Analytic Geometry. Addison-Wesley Publishing Company, 1900 E Lake Ave Glenview, IL 60025 United States.
    Tian, Y. and Zhang, Y. (2022). A comprehensive survey on regularization strategies in machine learning. Information Fusion, 80:146–166.
    Tibshirani, R. (1996a). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 58(1):267–288.
    Tibshirani, R. (1996b). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1):267–288.
    Tran, Q.-V., Su, S.-F., and Nguyen, V.-T. (2018). Pyramidal lucas-kanade-based noncontact breath motion detection. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(7):2659–2670.
    Uchida, M. C., Carvalho, R., Tessutti, V. D., Bacurau, R. F. P., Coelho-Júnior, H. J. é., Capelo, L. P., Ramos, H. P., dos Santos, M. C., Teixeira, L. F. M., and Marchetti, P. H. (2018). Identification of muscle fatigue by tracking facial expressions. PLoS ONE, 13(12):1–11.
    Varikuti, D. P., Genon, S., Sotiras, A., Schwender, H., Hoffstaedter, F., Patil, K. R., Jockwitz, C., Caspers, S., Moebus, S., Amunts, K., Davatzikos, C., and Eickhoff, S. B. (2018). Evaluation of non-negative matrix factorization of grey matter in age prediction. NeuroImage, 173(January):394–410.
    Vaswani, A., Shazeer, N., Parmer, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Illia, P. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 2017-Decem(Nips):5999–6009.
    Vejdani, K., Liebmann, T., Pannetier, N., Khosravi, E., Yousefnezhad, M., Krishnamurthy, P., Farzan, N., Bahar, C., Salehi, A., Esfandyarpour, H., et al. (2019). A novel technology for objective, accurate and non-invasive early diagnosis and monitoring of alzheimer's disease in clinics and clinical trials. bioRxiv, page 790469.
    Vivaldy, G., Wang, C.-C., Meher, J., and Nordling, T. E. M. (2023). Protocol for collection of synchronised facial video, Electrocardiography, and Photoplethysmography data for remote Photoplethysmography model training and evaluation. Manuscript in preparation.
    Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization of neural networks using dropconnect. In International conference on machine learning, pages 1058–1066. PMLR.
    Wang, C.-C. (2020). Non-contact heart rate measurement based on facial videos. Master’s thesis, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan City, 701.
    Wang, G., Wu, X., Xin, B., Gu, X., Wang, G., Zhang, Y., Zhao, J., Cheng, X., Chen, C., and Ma, J. (2023a). Machine learning in unmanned systems for chemical synthesis. Molecules, 28(5):2232.
    Wang, N., Gao, X., Tao, D., Yang, H., and Li, X. (2018). Facial feature point detection. Neurocomput., 275(C):50–65.
    Wang, Q., Chang, Y.-Y., Cai, R., Li, Z., Hariharan, B., Holynski, A., and Snavely, N. (2023b). Tracking everything everywhere all at once. arXiv preprint arXiv:2306.05422.
    Wang, R., Liu, N., Tao, Y.-Y., Gong, X.-Q., Zheng, J., Yang, C., Yang, L., and Zhang, X.-M. (2020). The application of rs-fmri in vascular cognitive impairment. Frontiers in Neurology, 11:951.
    Weigend, A., Rumelhart, D., and Huberman, B. (1990). Generalization by weight-elimination with application to forecasting. Advances in neural information processing systems, 3.
    Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid, C. (2013). Deepflow: Large displacement optical flow with deep matching. In Proceedings of the IEEE international conference on computer vision, pages 1385–1392.
    WHO, A. (2023). World health statistics 2016: monitoring health for the sdgs sustainable development goals. World Health Organization.
    Wong, X. I. and Majji, M. (2017). Uncertainty quantification of lucas kanade feature track and application to visual odometry. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 950–958. IEEE.
    Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1912–1920.
    Yan, C.-G., Wang, X.-D., Zuo, X.-N., and Zang, Y.-F. (2016). Dpabi: data processing and analysis for (resting-state) brain imaging. Neuroinformatics, 14:339–351.
    Ye, V., Li, Z., Tucker, R., Kanazawa, A., and Snavely, N. (2022). Deformable sprites for unsupervised video decomposition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2657–2666.
    Zbontar, J. and LeCun, Y. (2016). Stereo matching by training a convolutional neural network to compare image patches. J. of Mach. Learn. Res., 17(1):2287–2318.
    Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010). Deconvolutional networks. In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pages 2528–2535. IEEE.
    Zhang, B., Jiang, D., He, D., and Wang, L. (2021). Boosting the certified robustness of l-infinity distance nets. arXiv preprint arXiv:2110.06850.
    Zhang, Z., Song, Y., and Qi, H. (2017). Age progression/regression by conditional adversarial autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.
    Zhao, A., Durand, F., and Guttag, J. (2016). Estimating a small signal in the presence of large noise. In Proceedings of the IEEE International Conference on Computer Vision, volume 2016-Febru, pages 671–676.
    Zhao, J., Zhang, X., Gao, C., Qiu, X., Tian, Y., Zhu, Y., and Cao, W. (2019). Rapid mosaicking of unmanned aerial vehicle (UAV) images for crop growth monitoring using the SIFT algorithm. Remote Sens., 11(10):1226.
    Zheng, L., Yang, Y., and Tian, Q. (2017). SIFT meets CNN: A decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(5):1224–1244.
    Zheng, Y., Harley, A. W., Shen, B., Wetzstein, G., and Guibas, L. J. (2023). Pointodyssey: A large-scale synthetic dataset for long-term point tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 19855–19865.
    Zheng, Y.-T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.-S., and Neven, H. (2009). Tour the world: building a web-scale landmark recognition engine. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 1085–1092. IEEE.
    Zhou, X., Wang, D., and Krähenbühl, P. (2019). Objects as points. arXiv preprint arXiv:1904.07850.
    Zhou, Y., Arpit, D., Nwogu, I., and Govindaraju, V. (2014). Is joint training better for deep auto-encoders? arXiv preprint arXiv:1405.1380.
    Zhu, J.-D., Tsai, S.-J., Lin, C.-P., Lee, Y.-J., and Yang, A. C. (2023). Predicting aging trajectories of decline in brain volume, cortical thickness and fractional anisotropy in schizophrenia. Schizophrenia, 9(1):1.
    Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8697–8710.
    Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 67(2):301–320.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE