簡易檢索 / 詳目顯示

研究生: 王柏凱
Wang, Bo-Kai
論文名稱: 嵌入不同奈米碳材之氮化碳於新興污染物之光催化: 光觸媒特性與光催化活性之關聯
Photocatalysis of Emerging Contaminants by Graphitic Carbon Nitride Embedded with Carbon-based Nanomaterials: the Correlation of Photoreactivity and Photocatalyst's characteristics
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 56
中文關鍵詞: 再生能源可見光催化氮化碳奈米碳材新興污染物
外文關鍵詞: Renewable energy, Visible light photocatalysis, Graphitic carbon nitride, Carbon-based nanomaterials, Emerging contaminants
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討嵌入不同奈米碳材之氮化碳(graphitic carbon nitride、GCN)於降解新興污染物,如雙酚A(BPA)及四環素(tetracycline)之光催化活性,並評估這些光觸媒的特性與光催化活性之關聯。於中性pH值及可見光下,摻雜還原石墨烯(rGO)、氧化石墨烯(GO)、多壁奈米碳管(MWCNT)、單壁奈米碳管(SWCNT)之GCN可以將降解BPA的光催化速率提高至三倍以上,其中光催化活性最高的材料可以於30分鐘內降解幾乎100%的四環素,MWCNT及GO的最佳奈米碳材摻雜含量為0.05% (w/w),SWCNT及rGO則分別為0.03%及0.25% (w/w),提升效果排序為MWCNT > SWCNT > rGO > GO。材料特性通過吸光值測定、比表面積分析(BET)、電化學阻抗分析(EIS)、光激發螢光(PL)等實驗獲得,表明與GCN緊密接觸合成的奈米碳材可以增加GCN的表面積和電導率,並促進電子-電洞對的分離,並探討了這些特性與光催化活性的關聯。我們也研究了BPA及tetracycline的光降解機理,其涉及選擇性氧化劑,如超氧化物(O2•−)和單線態氧(1O2),其中O2•−是通過單價電子還原O2,而1O2則是氧化O2•−而形成的。透過添加天然有機物模擬了真實廢水的情形並證實了合成的光觸媒於廢水中有效。本研究提供了較全面性之GCN摻雜奈米碳材之非金屬光催化劑的設計參考及光催化機理了解。

    This study explored the photocatalytic activity of graphitic carbon nitride (GCN) embedded with various carbon-based nanomaterials in degrading emerging pollutants, such as bisphenol A (BPA) and tetracycline, and evaluated the characteristics of these photocatalysts correlation with photocatalytic activity. Embedding reduced graphene oxide (rGO), graphene oxide (GO), multi-walled carbon nanotubes (MWCNT), and single-walled carbon nanotubes (SWCNT) with GCN significantly improve the photoreaction rate of bisphenol A (BPA) by more than three folds under visible light at pH = 7. The photocatalyst with the highest photocatalytic activity can degrade almost 100% of tetracycline in 30 minutes. The best doping content for MWCNT and GO are 0.05% (w/w), SWCNT and rGO are 0.03% (w/w) and 0.25% (w/w), respectively, and the order of the improvement effect is MWCNT > SWCNT > rGO > GO. The photocatalyst’s characteristics were obtained through experiments such as absorbance measurement, specific surface area analysis (BET), electrochemical impedance analysis (EIS), and photoluminescence (PL), indicate that carbon-based nanomaterials synthesized increased the electrical conductivity and surface areas in intimate contact with GCN and promote the separation of electron hole pairs. The correlation of these characteristics and photocatalytic activity are discussed as well. We have also studied the photodegradation mechanism of BPA and tetracycline which involved ROS as superoxide (O2•−) and singlet oxygen (1O2). The O2•− generate through one-electron reduction of O2 and the 1O2 generate from oxidation of O2•− by photogenerated hole. By adding natural organic matter, the condition of real wastewater was simulated and the synthetic photocatalyst was proved to be effective in it. This study provides a more comprehensive design reference and photocatalysis mechanism for the metal-free GCN/CBN photocatalysts.

    摘要 I ABSTRACT II 誌謝 III CONTENTS IV LIST OF TABLE VII LIST OF FIGURE VIII CHAPTER 1. INTRODUCTION 1 1.1 Background and motivation 1 1.2 Objective 3 CHAPTER 2. LITERATURE REVIEWS 4 2.1 Properties and application of graphitic carbon nitride 4 2.2 Properties and application of carbon-based nanomaterials 5 2.3 The advantage of GCN and carbon-based nanomaterial composite photocatalysts 6 Rhodamine B degradation 9 2.4 Hazards of BPA 13 CHAPTER 3. EXPERIMENTAL PROCEDURE 14 3.1 Materials 14 3.2 Synthesis of GO and rGO 14 3.3 Synthesis of carbon-based nanomaterials and GCN composite photocatalysts 15 3.4 Photocatalytic experiments 15 3.5 BPA and TC measurements 17 3.6 Characterization 18 3.6.1 Transmission electron microscope (TEM) 18 3.6.2 X-ray Diffraction 18 3.6.3 X-ray photoelectron spectroscopy 18 3.6.4 UV–vis diffuse reflectance spectra 18 3.6.5 BET surface area analysis 19 3.6.6 Photoluminescence (PL) 19 3.7 Electrochemical analysis 19 CHAPTER 4. RESULT AND DISCUSSION 20 4.1 Characterizations of GCN photocatalysts 20 4.1.1 XRD patterns 20 4.1.2 TEM imaging 21 4.1.3 XPS analysis 23 4.1.4 UV-visible diffuse reflectance spectrum 24 4.1.5 BET surface area analysis 24 4.1.6 EIS analysis 25 4.1.7 PL spectroscopy 26 4.2 Photocatalysis of BPA by GCN/CBN composite materials 27 4.3 Correlation of the physicochemical properties and photocatalysis rates 28 4.4 Mechanisms of BPA photodegradation 30 4.5 The schematic energy level diagram 33 4.6 Photocatalysis of TC by GCN composite materials 34 4.7 Mechanisms of TC photodegradation 35 4.8 The BPA removal in water with natural organic matter 36 CHAPTER 5. CONCLUSION 38 REFERENCE 39 APPENDIX 49

    (1) Mauter, M. S.; Zucker, I.; Perreault, F.; Werber, J. R.; Kim, J.-H.; Elimelech, M. The Role of Nanotechnology in Tackling Global Water Challenges. Nat. Sustain. 2018, 1 (4), 166–175. https://doi.org/10.1038/s41893-018-0046-8.
    (2) Mauter, M. S.; Elimelech, M. Environmental Applications of Carbon-Based Nanomaterials. Environ. Sci. Technol. 2008, 42 (16), 5843–5859. https://doi.org/10.1021/es8006904.
    (3) Hoffmann, M. R.; Martin, S. T.; Choi, Wonyong.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95 (1), 69–96. https://doi.org/10.1021/cr00033a004.
    (4) Loeb, S. K.; Alvarez, P. J. J.; Brame, J. A.; Cates, E. L.; Choi, W.; Crittenden, J.; Dionysiou, D. D.; Li, Q.; Li-Puma, G.; Quan, X.; Sedlak, D. L.; David Waite, T.; Westerhoff, P.; Kim, J.-H. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environ. Sci. Technol. 2019, 53 (6), 2937–2947. https://doi.org/10.1021/acs.est.8b05041.
    (5) Chen, C.; Ma, W.; Zhao, J. Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation. Chem. Soc. Rev. 2010, 39 (11), 4206–4219. https://doi.org/10.1039/B921692H.
    (6) Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Photocatalytic Organic Pollutants Degradation in Metal–Organic Frameworks. Energy Environ. Sci. 2014, 7 (9), 2831–2867. https://doi.org/10.1039/C4EE01299B.
    (7) Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K.; Entezari, M. H.; Dionysiou, D. D. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B Environ. 2012, 125, 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036.
    (8) Ku, Y.; Jung, I.-L. Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide. Water Res. 2001, 35 (1), 135–142. https://doi.org/10.1016/S0043-1354(00)00098-1.
    (9) Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32 (1), 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001.
    (10) Khalil, L. B.; Mourad, W. E.; Rophael, M. W. Photocatalytic Reduction of Environmental Pollutant Cr(VI) over Some Semiconductors under UV/Visible Light Illumination. Appl. Catal. B Environ. 1998, 17 (3), 267–273. https://doi.org/10.1016/S0926-3373(98)00020-4.
    (11) Rehman, S.; Ullah, R.; Butt, A. M.; Gohar, N. D. Strategies of Making TiO2 and ZnO Visible Light Active. J. Hazard. Mater. 2009, 170 (2), 560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064.
    (12) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331 (6018), 746–750. https://doi.org/10.1126/science.1200448.
    (13) Subagio, D. P.; Srinivasan, M.; Lim, M.; Lim, T.-T. Photocatalytic Degradation of Bisphenol-A by Nitrogen-Doped TiO2 Hollow Sphere in a Vis-LED Photoreactor. Appl. Catal. B Environ. 2010, 95 (3), 414–422. https://doi.org/10.1016/j.apcatb.2010.01.021.
    (14) Ghows, N.; Entezari, M. H. Fast and Easy Synthesis of Core–Shell Nanocrystal (CdS/TiO2) at Low Temperature by Micro-Emulsion under Ultrasound. Ultrason. Sonochem. 2011, 18 (2), 629–634. https://doi.org/10.1016/j.ultsonch.2010.08.003.
    (15) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-Triamino-Tri- s -Triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-Ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. J. Am. Chem. Soc. 2003, 125 (34), 10288–10300. https://doi.org/10.1021/ja0357689.
    (16) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8 (1), 76–80. https://doi.org/10.1038/nmat2317.
    (17) Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C 3 N 4 )-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116 (12), 7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075.
    (18) Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27 (13), 2150–2176. https://doi.org/10.1002/adma.201500033.
    (19) Ye, S.; Wang, R.; Wu, M.-Z.; Yuan, Y.-P. A Review on G-C3N4 for Photocatalytic Water Splitting and CO2 Reduction. Appl. Surf. Sci. 2015, 358, 15–27. https://doi.org/10.1016/j.apsusc.2015.08.173.
    (20) Mao, J.; Peng, T.; Zhang, X.; Li, K.; Ye, L.; Zan, L. Effect of Graphitic Carbon Nitride Microstructures on the Activity and Selectivity of Photocatalytic CO2 Reduction under Visible Light. Catal. Sci. Technol. 2013, 3 (5), 1253–1260. https://doi.org/10.1039/C3CY20822B.
    (21) Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131 (5), 1680–1681. https://doi.org/10.1021/ja809307s.
    (22) Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation Performance of G-C 3 N 4 Fabricated by Directly Heating Melamine. Langmuir 2009, 25 (17), 10397–10401. https://doi.org/10.1021/la900923z.
    (23) Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on G-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030.
    (24) Han, Q.; Hu, C.; Zhao, F.; Zhang, Z.; Chen, N.; Qu, L. One-Step Preparation of Iodine-Doped Graphitic Carbon Nitride Nanosheets as Efficient Photocatalysts for Visible Light Water Splitting. J. Mater. Chem. A 2015, 3 (8), 4612–4619. https://doi.org/10.1039/C4TA06093H.
    (25) Ran, J.; Ma, T. Y.; Gao, G.; Du, X.-W.; Qiao, S. Z. Porous P-Doped Graphitic Carbon Nitride Nanosheets for Synergistically Enhanced Visible-Light Photocatalytic H2 Production. Energy Environ. Sci. 2015, 8 (12), 3708–3717. https://doi.org/10.1039/C5EE02650D.
    (26) Samanta, S.; Martha, S.; Parida, K. Facile Synthesis of Au/g-C3N4 Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution under Visible-Light Irradiation. ChemCatChem 2014, 6 (5), 1453–1462. https://doi.org/10.1002/cctc.201300949.
    (27) Tiong, P.; Lintang, H. O.; Endud, S.; Yuliati, L. Improved Interfacial Charge Transfer and Visible Light Activity of Reduced Graphene Oxide–Graphitic Carbon Nitride Photocatalysts. RSC Adv. 2015, 5 (114), 94029–94039. https://doi.org/10.1039/C5RA17967J.
    (28) Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S.; Jin, W. Recent Advances in Non-Metal Modification of Graphitic Carbon Nitride for Photocatalysis: A Historic Review. Catal. Sci. Technol. 2016, 6 (19), 7002–7023. https://doi.org/10.1039/C6CY01195K.
    (29) Zhou, L.; Zhang, H.; Guo, X.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S. Metal-Free Hybrids of Graphitic Carbon Nitride and Nanodiamonds for Photoelectrochemical and Photocatalytic Applications. J. Colloid Interface Sci. 2017, 493, 275–280. https://doi.org/10.1016/j.jcis.2017.01.038.
    (30) Christoforidis, K. C.; Syrgiannis, Z.; La Parola, V.; Montini, T.; Petit, C.; Stathatos, E.; Godin, R.; Durrant, J. R.; Prato, M.; Fornasiero, P. Metal-Free Dual-Phase Full Organic Carbon Nanotubes/g-C3N4 Heteroarchitectures for Photocatalytic Hydrogen Production. Nano Energy 2018, 50, 468–478. https://doi.org/10.1016/j.nanoen.2018.05.070.
    (31) Wang, X.; Blechert, S.; Antonietti, M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2 (8), 1596–1606. https://doi.org/10.1021/cs300240x.
    (32) Lin, H.-P.; Chen, C.-C.; William Lee, W.; Lai, Y.-Y.; Chen, J.-Y.; Chen, Y.-Q.; Fu, J.-Y. Synthesis of a SrFeO 3−x /g-C 3 N 4 Heterojunction with Improved Visible-Light Photocatalytic Activities in Chloramphenicol and Crystal Violet Degradation. RSC Adv. 2016, 6 (3), 2323–2336. https://doi.org/10.1039/C5RA21339H.
    (33) He, Y.; Wang, Y.; Zhang, L.; Teng, B.; Fan, M. High-Efficiency Conversion of CO2 to Fuel over ZnO/g-C3N4 Photocatalyst. Appl. Catal. B Environ. 2015, 168–169, 1–8. https://doi.org/10.1016/j.apcatb.2014.12.017.
    (34) Markushyna, Y.; Smith, C. A.; Savateev, A. Organic Photocatalysis: Carbon Nitride Semiconductors vs. Molecular Catalysts. Eur. J. Org. Chem. 2020, 2020 (10), 1294–1309. https://doi.org/10.1002/ejoc.201901112.
    (35) Yuan, Q.; Zhang, D.; Yu, P.; Sun, R.; Javed, H.; Wu, G.; Alvarez, P. J. J. Selective Adsorption and Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Molecularly-Imprinted Graphitic Carbon Nitride. Environ. Sci. Technol. 2020, 54 (7), 4621–4630. https://doi.org/10.1021/acs.est.9b06926.
    (36) Chen, L.; Zhao, X.; Duan, X.; Zhang, J.; Ao, Z.; Li, P.; Wang, S.; Wang, Y.; Cheng, S.; Zhao, H.; He, F.; Dong, P.; Zhao, C.; Wang, S.; Sun, H. Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement. ACS Sustain. Chem. Eng. 2020, 8 (38), 14386–14396. https://doi.org/10.1021/acssuschemeng.0c04097.
    (37) Cha, C.; Shin, S. R.; Annabi, N.; Dokmeci, M. R.; Khademhosseini, A. Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano 2013, 7 (4), 2891–2897. https://doi.org/10.1021/nn401196a.
    (38) Zhang, D.-Y.; Zheng, Y.; Tan, C.-P.; Sun, J.-H.; Zhang, W.; Ji, L.-N.; Mao, Z.-W. Graphene Oxide Decorated with Ru(II)–Polyethylene Glycol Complex for Lysosome-Targeted Imaging and Photodynamic/Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9 (8), 6761–6771. https://doi.org/10.1021/acsami.6b13808.
    (39) Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Res. Lett. 2014, 9 (1), 393. https://doi.org/10.1186/1556-276X-9-393.
    (40) Hwang, J.-Y.; Shin, U. S.; Jang, W.-C.; Hyun, J. K.; Wall, I. B.; Kim, H.-W. Biofunctionalized Carbon Nanotubes in Neural Regeneration: A Mini-Review. Nanoscale 2012, 5 (2), 487–497. https://doi.org/10.1039/C2NR31581E.
    (41) Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide. Adv. Mater. 2010, 22 (40), 4467–4472. https://doi.org/10.1002/adma.201000732.
    (42) Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1 (1), 31–47. https://doi.org/10.1016/j.nanoms.2019.02.004.
    (43) Pattnaik, S.; Swain, K.; Lin, Z. Graphene and Graphene-Based Nanocomposites: Biomedical Applications and Biosafety. J. Mater. Chem. B 2016, 4 (48), 7813–7831. https://doi.org/10.1039/C6TB02086K.
    (44) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Graphene Oxide as a Structure-Directing Agent for the Two-Dimensional Interface Engineering of Sandwich-like Graphene–g-C3N4 Hybrid Nanostructures with Enhanced Visible-Light Photoreduction of CO2 to Methane. Chem. Commun. 2014, 51 (5), 858–861. https://doi.org/10.1039/C4CC08996K.
    (45) Wang, J.; Chen, Z.; Chen, B. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environ. Sci. Technol. 2014, 48 (9), 4817–4825. https://doi.org/10.1021/es405227u.
    (46) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119 (12), 7610–7672. https://doi.org/10.1021/acs.chemrev.8b00705.
    (47) Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano 2010, 4 (1), 380–386. https://doi.org/10.1021/nn901221k.
    (48) Ahmmad, B.; Kusumoto, Y.; Somekawa, S.; Ikeda, M. Carbon Nanotubes Synergistically Enhance Photocatalytic Activity of TiO2. Catal. Commun. 2008, 9 (6), 1410–1413. https://doi.org/10.1016/j.catcom.2007.12.003.
    (49) Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic Carbon-Nanotube–TiO2 Composites. Adv. Mater. 2009, 21 (21), 2233–2239. https://doi.org/10.1002/adma.200802738.
    (50) Zhang, R.; Ma, M.; Zhang, Q.; Dong, F.; Zhou, Y. Multifunctional G-C3N4/Graphene Oxide Wrapped Sponge Monoliths as Highly Efficient Adsorbent and Photocatalyst. Appl. Catal. B Environ. 2018, 235, 17–25. https://doi.org/10.1016/j.apcatb.2018.04.061.
    (51) Li, J.; Tang, Y.; Jin, R.; Meng, Q.; Chen, Y.; Long, X.; Wang, L.; Guo, H.; Zhang, S. Ultrasonic-Microwave Assisted Synthesis of GO/g-C3N4 Composites for Efficient Photocatalytic H2 Evolution. Solid State Sci. 2019, 97, 105990. https://doi.org/10.1016/j.solidstatesciences.2019.105990.
    (52) Aleksandrzak, M.; Kukulka, W.; Mijowska, E. Graphitic Carbon Nitride/Graphene Oxide/Reduced Graphene Oxide Nanocomposites for Photoluminescence and Photocatalysis. Appl. Surf. Sci. 2017, 398, 56–62. https://doi.org/10.1016/j.apsusc.2016.12.023.
    (53) Zhang, X.; Jia, C.; Xue, Y.; Yang, P. Fabrication of RGO/g-C3N4 Composites via Electrostatic Assembly towards Charge Separation Control. RSC Adv. 2017, 7 (69), 43888–43893. https://doi.org/10.1039/C7RA07706H.
    (54) Yuan, D.; Huang, W.; Chen, X.; Li, Z.; Ding, J.; Wang, L.; Wan, H.; Dai, W.-L.; Guan, G. Introduction of In-Plane π-Conjugated Heterojunction via RGO Modulation: A Promising Approach to Enhance Photoexcited Charge Separation and Transfer of g-C3N4. Appl. Surf. Sci. 2019, 489, 658–667. https://doi.org/10.1016/j.apsusc.2019.05.303.
    (55) Pawar, R. C.; Khare, V.; Lee, C. S. Hybrid Photocatalysts Using Graphitic Carbon Nitride/Cadmium Sulfide/Reduced Graphene Oxide (g-C3N4/CdS/RGO) for Superior Photodegradation of Organic Pollutants under UV and Visible Light. Dalton Trans. 2014, 43 (33), 12514–12527. https://doi.org/10.1039/C4DT01278J.
    (56) Ge, L.; Han, C. Synthesis of MWNTs/g-C3N4 Composite Photocatalysts with Efficient Visible Light Photocatalytic Hydrogen Evolution Activity. Appl. Catal. B Environ. 2012, 117–118, 268–274. https://doi.org/10.1016/j.apcatb.2012.01.021.
    (57) Liu, J.; Song, Y.; Xu, H.; Zhu, X.; Lian, J.; Xu, Y.; Zhao, Y.; Huang, L.; Ji, H.; Li, H. Non-Metal Photocatalyst Nitrogen-Doped Carbon Nanotubes Modified Mpg-C3N4: Facile Synthesis and the Enhanced Visible-Light Photocatalytic Activity. J. Colloid Interface Sci. 2017, 494, 38–46. https://doi.org/10.1016/j.jcis.2017.01.010.
    (58) Zhao, S.; Guo, T.; Li, X.; Xu, T.; Yang, B.; Zhao, X. Carbon Nanotubes Covalent Combined with Graphitic Carbon Nitride for Photocatalytic Hydrogen Peroxide Production under Visible Light. Appl. Catal. B Environ. 2018, 224, 725–732. https://doi.org/10.1016/j.apcatb.2017.11.005.
    (59) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two-Electron Pathway. Science 2015, 347 (6225), 970–974. https://doi.org/10.1126/science.aaa3145.
    (60) Liao, G.; Chen, S.; Quan, X.; Yu, H.; Zhao, H. Graphene Oxide Modified G-C3N4 Hybrid with Enhanced Photocatalytic Capability under Visible Light Irradiation. J. Mater. Chem. 2012, 22 (6), 2721–2726. https://doi.org/10.1039/C1JM13490F.
    (61) Li, B.; Fang, Q.; Si, Y.; Huang, T.; Huang, W.-Q.; Hu, W.; Pan, A.; Fan, X.; Huang, G.-F. Ultra-Thin Tubular Graphitic Carbon Nitride-Carbon Dot Lateral Heterostructures: One-Step Synthesis and Highly Efficient Catalytic Hydrogen Generation. Chem. Eng. J. 2020, 397, 125470. https://doi.org/10.1016/j.cej.2020.125470.
    (62) Gu, Y.; Yu, Y.; Zou, J.; Shen, T.; Xu, Q.; Yue, X.; Meng, J.; Wang, J. The Ultra-Rapid Synthesis of RGO/g-C3N4 Composite via Microwave Heating with Enhanced Photocatalytic Performance. Mater. Lett. 2018, 232, 107–109. https://doi.org/10.1016/j.matlet.2018.08.077.
    (63) Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. J. Phys. Chem. C 2011, 115 (15), 7355–7363. https://doi.org/10.1021/jp200953k.
    (64) Li, Y.; Zhang, H.; Liu, P.; Wang, D.; Li, Y.; Zhao, H. Cross-Linked g-C3N4/RGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity. Small 2013, 9 (19), 3336–3344. https://doi.org/10.1002/smll.201203135.
    (65) Zhong, C.-R.; Lee, T.-W.; Li, J.-A.; Lai, Y.-H.; Ha, T.-J.; Chen, C. Origin of the Enhanced Photocatalytic Activity of Graphitic Carbon Nitride Nanocomposites and the Effects of Water Constituents. Carbon 2020, 167, 852–862. https://doi.org/10.1016/j.carbon.2020.06.028.
    (66) Yuan, B.; Wei, J.; Hu, T.; Yao, H.; Jiang, Z.; Fang, Z.; Chu, Z. Simple Synthesis of G-C3N4/RGO Hybrid Catalyst for the Photocatalytic Degradation of Rhodamine B. Chin. J. Catal. 2015, 36 (7), 1009–1016. https://doi.org/10.1016/S1872-2067(15)60844-0.
    (67) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Surface Charge Modification via Protonation of Graphitic Carbon Nitride (g-C3N4) for Electrostatic Self-Assembly Construction of 2D/2D Reduced Graphene Oxide (RGO)/g-C3N4 Nanostructures toward Enhanced Photocatalytic Reduction of Carbon Dioxide to Methane. Nano Energy 2015, 13, 757–770. https://doi.org/10.1016/j.nanoen.2015.03.014.
    (68) Shanker Sahu, R.; Dubey, A.; Shih, Y. Novel Metal-Free in-Plane Functionalized Graphitic Carbon Nitride with Graphene Quantum Dots for Effective Photodegradation of 4-Bromophenol. Carbon 2021, 182, 89–99. https://doi.org/10.1016/j.carbon.2021.05.033.
    (69) Zhao, J.; Liu, Y.; Wang, Y.; Li, H.; Wang, J.; Li, Z. Boron Doped Graphitic Carbon Nitride Dots Dispersed on Graphitic Carbon Nitride/Graphene Hybrid Nanosheets as High Performance Photocatalysts for Hydrogen Evolution Reaction. Appl. Surf. Sci. 2019, 470, 923–932. https://doi.org/10.1016/j.apsusc.2018.11.138.
    (70) Xu, Y.; Xu, H.; Wang, L.; Yan, J.; Li, H.; Song, Y.; Huang, L.; Cai, G. The CNT Modified White C3N4 Composite Photocatalyst with Enhanced Visible-Light Response Photoactivity. Dalton Trans. 2013, 42 (21), 7604–7613. https://doi.org/10.1039/C3DT32871F.
    (71) Ai, B.; Duan, X.; Sun, H.; Qiu, X.; Wang, S. Metal-Free Graphene-Carbon Nitride Hybrids for Photodegradation of Organic Pollutants in Water. Catal. Today 2015, 258, 668–675. https://doi.org/10.1016/j.cattod.2015.01.024.
    (72) Bai, Z.; Bai, Z.; Gao, T.; Bai, Z.; Zhu, Y. Preparation Effects on the Morphology and Photocatalytic Properties of Carbon Nitride Nanotubes. Results Phys. 2019, 13, 102254. https://doi.org/10.1016/j.rinp.2019.102254.
    (73) Ding, F.; Zhao, Z.; Yang, D.; Zhao, X.; Chen, Y.; Jiang, Z. One-Pot Fabrication of g-C3N4/MWCNTs Nanocomposites with Superior Visible-Light Photocatalytic Performance. Ind. Eng. Chem. Res. 2019, 58 (9), 3679–3687. https://doi.org/10.1021/acs.iecr.8b05293.
    (74) Bai, X.; Wang, L.; Wang, Y.; Yao, W.; Zhu, Y. Enhanced Oxidation Ability of G-C3N4 Photocatalyst via C60 Modification. Appl. Catal. B Environ. 2014, 152–153, 262–270. https://doi.org/10.1016/j.apcatb.2014.01.046.
    (75) Chen, X.; Chen, H.; Guan, J.; Zhen, J.; Sun, Z.; Du, P.; Lu, Y.; Yang, S. A Facile Mechanochemical Route to a Covalently Bonded Graphitic Carbon Nitride (g-C3N4) and Fullerene Hybrid toward Enhanced Visible Light Photocatalytic Hydrogen Production. Nanoscale 2017, 9 (17), 5615–5623. https://doi.org/10.1039/C7NR01237C.
    (76) Chen, X.; Deng, K.; Zhou, P.; Zhang, Z. Metal- and Additive-Free Oxidation of Sulfides into Sulfoxides by Fullerene-Modified Carbon Nitride with Visible-Light Illumination. ChemSusChem 2018, 11 (14), 2444–2452. https://doi.org/10.1002/cssc.201800450.
    (77) Seng, R. X.; Tan, L.-L.; Lee, W. P. C.; Ong, W.-J.; Chai, S.-P. Nitrogen-Doped Carbon Quantum Dots-Decorated 2D Graphitic Carbon Nitride as a Promising Photocatalyst for Environmental Remediation: A Study on the Importance of Hybridization Approach. J. Environ. Manage. 2020, 255, 109936. https://doi.org/10.1016/j.jenvman.2019.109936.
    (78) Duan, Y.; Deng, L.; Shi, Z.; Liu, X.; Zeng, H.; Zhang, H.; Crittenden, J. Efficient Sulfadiazine Degradation via In-Situ Epitaxial Grow of Graphitic Carbon Nitride (g-C3N4) on Carbon Dots Heterostructures under Visible Light Irradiation: Synthesis, Mechanisms and Toxicity Evaluation. J. Colloid Interface Sci. 2020, 561, 696–707. https://doi.org/10.1016/j.jcis.2019.11.046.
    (79) Zhang, H.; Zhao, L.; Geng, F.; Guo, L.-H.; Wan, B.; Yang, Y. Carbon Dots Decorated Graphitic Carbon Nitride as an Efficient Metal-Free Photocatalyst for Phenol Degradation. Appl. Catal. B Environ. 2016, 180, 656–662. https://doi.org/10.1016/j.apcatb.2015.06.056.
    (80) Suryawanshi, A.; Dhanasekaran, P.; Mhamane, D.; Kelkar, S.; Patil, S.; Gupta, N.; Ogale, S. Doubling of Photocatalytic H2 Evolution from G-C3N4 via Its Nanocomposite Formation with Multiwall Carbon Nanotubes: Electronic and Morphological Effects. Int. J. Hydrog. Energy 2012, 37 (12), 9584–9589. https://doi.org/10.1016/j.ijhydene.2012.03.123.
    (81) Fang, S.; Xia, Y.; Lv, K.; Li, Q.; Sun, J.; Li, M. Effect of Carbon-Dots Modification on the Structure and Photocatalytic Activity of g-C3N4. Appl. Catal. B Environ. 2016, 185, 225–232. https://doi.org/10.1016/j.apcatb.2015.12.025.
    (82) Li, Y.; Sun, Y.; Dong, F.; Ho, W.-K. Enhancing the Photocatalytic Activity of Bulk G-C3N4 by Introducing Mesoporous Structure and Hybridizing with Graphene. J. Colloid Interface Sci. 2014, 436, 29–36. https://doi.org/10.1016/j.jcis.2014.09.004.
    (83) Chai, B.; Liao, X.; Song, F.; Zhou, H. Fullerene Modified C3N4 Composites with Enhanced Photocatalytic Activity under Visible Light Irradiation. Dalton Trans. 2013, 43 (3), 982–989. https://doi.org/10.1039/C3DT52454J.
    (84) Oh, J.; Lee, S.; Zhang, K.; Hwang, J. O.; Han, J.; Park, G.; Kim, S. O.; Park, J. H.; Park, S. Graphene Oxide-Assisted Production of Carbon Nitrides Using a Solution Process and Their Photocatalytic Activity. Carbon 2014, 66, 119–125. https://doi.org/10.1016/j.carbon.2013.08.049.
    (85) Chen, Y.; Li, J.; Hong, Z.; Shen, B.; Lin, B.; Gao, B. Origin of the Enhanced Visible-Light Photocatalytic Activity of CNT Modified g-C3N4 for H2 Production. Phys. Chem. Chem. Phys. 2014, 16 (17), 8106–8113. https://doi.org/10.1039/C3CP55191A.
    (86) Sielicki, K.; Aleksandrzak, M.; Mijowska, E. Oxidized SWCNT and MWCNT as Co-Catalysts of Polymeric Carbon Nitride for Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2020, 508, 145144. https://doi.org/10.1016/j.apsusc.2019.145144.
    (87) Dai, K.; Lu, L.; Liu, Q.; Zhu, G.; Wei, X.; Bai, J.; Xuan, L.; Wang, H. Sonication Assisted Preparation of Graphene Oxide/Graphitic-C3N4 Nanosheet Hybrid with Reinforced Photocurrent for Photocatalyst Applications. Dalton Trans. 2014, 43 (17), 6295–6299. https://doi.org/10.1039/C3DT53106F.
    (88) Tong, Z.; Yang, D.; Shi, J.; Nan, Y.; Sun, Y.; Jiang, Z. Three-Dimensional Porous Aerogel Constructed by g-C3N4 and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance. ACS Appl. Mater. Interfaces 2015, 7 (46), 25693–25701. https://doi.org/10.1021/acsami.5b09503.
    (89) Xu, L.; Huang, W.-Q.; Wang, L.-L.; Tian, Z.-A.; Hu, W.; Ma, Y.; Wang, X.; Pan, A.; Huang, G.-F. Insights into Enhanced Visible-Light Photocatalytic Hydrogen Evolution of g-C3N4 and Highly Reduced Graphene Oxide Composite: The Role of Oxygen. Chem. Mater. 2015, 27 (5), 1612–1621. https://doi.org/10.1021/cm504265w.
    (90) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Graphene Oxide as a Structure-Directing Agent for the Two-Dimensional Interface Engineering of Sandwich-like Graphene–g-C3N4 Hybrid Nanostructures with Enhanced Visible-Light Photoreduction of CO2 to Methane. Chem. Commun. 2014, 51 (5), 858–861. https://doi.org/10.1039/C4CC08996K.
    (91) Erkurt, H. A. Biodegradation and Detoxification of BPA: Involving Laccase and a Mediator. CLEAN – Soil Air Water 2015, 43 (6), 932–939. https://doi.org/10.1002/clen.201400628.
    (92) Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine Disruptor Bisphenol A Strongly Binds to Human Estrogen-Related Receptor Gamma (ERRgamma) with High Constitutive Activity. Toxicol. Lett. 2006, 167 (2), 95–105. https://doi.org/10.1016/j.toxlet.2006.08.012.
    (93) Seachrist, D. D.; Bonk, K. W.; Ho, S.-M.; Prins, G. S.; Soto, A. M.; Keri, R. A. A Review of the Carcinogenic Potential of Bisphenol A. Reprod. Toxicol. 2016, 59, 167–182. https://doi.org/10.1016/j.reprotox.2015.09.006.
    (94) Zhou, N. A.; Kjeldal, H.; Gough, H. L.; Nielsen, J. L. Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of Sphingobium Sp. BiD32. Environ. Sci. Technol. 2015, 49 (20), 12232–12241. https://doi.org/10.1021/acs.est.5b02987.
    (95) Chouhan, S.; Yadav, S. K.; Prakash, J.; Swati; Singh, S. P. Effect of Bisphenol A on Human Health and Its Degradation by Microorganisms: A Review. Ann. Microbiol. 2014, 64 (1), 13–21. https://doi.org/10.1007/s13213-013-0649-2.
    (96) Yamada, H.; Furuta, I.; Kato, E. H.; Kataoka, S.; Usuki, Y.; Kobashi, G.; Sata, F.; Kishi, R.; Fujimoto, S. Maternal Serum and Amniotic Fluid Bisphenol A Concentrations in the Early Second Trimester. Reprod. Toxicol. 2002, 16 (6), 735–739. https://doi.org/10.1016/S0890-6238(02)00051-5.
    (97) Hou, W.-C.; Wang, Y.-S. Photocatalytic Generation of H 2 O 2 by Graphene Oxide in Organic Electron Donor-Free Condition under Sunlight. ACS Sustain. Chem. Eng. 2017, 5 (4), 2994–3001. https://doi.org/10.1021/acssuschemeng.6b02635.
    (98) Wu, S.-S.; Hou, W.-C.; Wang, D. K. Photocatalytic Reduction of Cr(VI) by Graphene Oxide Materials under Sunlight or Visible Light: The Effects of Low-Molecular-Weight Chemicals. Environ. Sci. Nano 2020, 7 (8), 2399–2409. https://doi.org/10.1039/D0EN00329H.
    (99) Chen, Y.-H.; Wang, B.-K.; Hou, W.-C. Graphitic Carbon Nitride Embedded with Graphene Materials towards Photocatalysis of Bisphenol A: The Role of Graphene and Mediation of Superoxide and Singlet Oxygen. Chemosphere 2021, 278, 130334. https://doi.org/10.1016/j.chemosphere.2021.130334.
    (100) Wang, Y.; Li, Y.; Ju, W.; Wang, J.; Yao, H.; Zhang, L.; Wang, J.; Li, Z. Molten Salt Synthesis of Water-Dispersible Polymeric Carbon Nitride Nanoseaweeds and Their Application as Luminescent Probes. Carbon 2016, 102, 477–486. https://doi.org/10.1016/j.carbon.2016.02.065.
    (101) Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous Graphitic Carbon Nitride Synthesized via Direct Polymerization of Urea for Efficient Sunlight-Driven Photocatalytic Hydrogen Production. Nanoscale 2012, 4 (17), 5300. https://doi.org/10.1039/c2nr30948c.
    (102) Wang, S.; Chen, L.; Zhao, X.; Zhang, J.; Ao, Z.; Liu, W.; Wu, H.; Shi, L.; Yin, Y.; Xu, X.; Zhao, C.; Duan, X.; Wang, S.; Sun, H. Efficient Photocatalytic Overall Water Splitting on Metal-Free 1D SWCNT/2D Ultrathin C3N4 Heterojunctions via Novel Non-Resonant Plasmonic Effect. Appl. Catal. B Environ. 2020, 278, 119312. https://doi.org/10.1016/j.apcatb.2020.119312.
    (103) Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Chen, W. Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity. J. Mater. Chem. 2011, 21 (38), 14398–14401. https://doi.org/10.1039/C1JM12620B.
    (104) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (⋅OH/⋅O − in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17 (2), 513–886. https://doi.org/10.1063/1.555805.
    (105) Eyer, P. Effects of Superoxide Dismutase on the Autoxidation of 1,4-Hydroquinone. Chem. Biol. Interact. 1991, 80 (2), 159–176. https://doi.org/10.1016/0009-2797(91)90022-Y.
    (106) Hou, W.-C.; Jafvert, C. T. Photochemical Transformation of Aqueous C60 Clusters in Sunlight. Environ. Sci. Technol. 2009, 43 (2), 362–367. https://doi.org/10.1021/es802465z.
    (107) Chen, C.-Y.; Jafvert, C. T. Photoreactivity of Carboxylated Single-Walled Carbon Nanotubes in Sunlight: Reactive Oxygen Species Production in Water. Environ. Sci. Technol. 2010, 44 (17), 6674–6679. https://doi.org/10.1021/es101073p.
    (108) Gelderman, K.; Lee, L.; Donne, S. W. Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation. J. Chem. Educ. 2007, 84 (4), 685. https://doi.org/10.1021/ed084p685.
    (109) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11 (7), 3026–3033. https://doi.org/10.1021/nl201766h.
    (110) Zhang, Z.; Yates, J. T. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112 (10), 5520–5551. https://doi.org/10.1021/cr3000626.
    (111) Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15 (2), 627–637. https://doi.org/10.1002/pssb.19660150224.
    (112) Chi, Y.; Xu, S.; Li, M.; He, M.; Yu, H.; Li, L.; Yue, Q.; Gao, B. Effective Blockage of Chloride Ion Quenching and Chlorinated By-Product Generation in Photocatalytic Wastewater Treatment. J. Hazard. Mater. 2020, 396, 122670. https://doi.org/10.1016/j.jhazmat.2020.122670.

    無法下載圖示 校內:2026-10-22公開
    校外:2026-10-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE