簡易檢索 / 詳目顯示

研究生: 陳翔雄
Chen, Shiang-Shong
論文名稱: 利用超導儲能系統於大型離岸式風場之動態穩定度改善研究
Dynamic-Stability Improvement of a Large-Scale Offshore Wind Farm Using a Superconducting Magnetic Energy Storage Unit
指導教授: 王醴
Wang, Li
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 86
中文關鍵詞: 感應發電機洋流場風場超導儲能系統模態控制理論特徵值非線性模擬
外文關鍵詞: nonlinear model simulations., eigenvalue, wind farm (WF), induction generator (IG), marine-current farm (MCF), modal control theory, superconducting magnetic energy storage (SMES)
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個超導儲能系統控制架構連接於市電併聯型離岸式風場,達到功率潮流控制及改善系統阻尼控制。在本論文中,由40部2 MW之感應發電機組合而成一個等效80 MW的離岸式風場,另外由30部2 MW的感應發電機合併而成一個等效60 MW的洋流場,分別提供本論文做為單一風場以及混合風場及洋流場的研究模型使用。本論文所提出之阻尼控制器是將超導儲能系統連接等效風場或連接混合風場及洋流場後,利用模態控制理論進行設計。在頻域分析下,本論文基於線性化模型使用特徵值技巧進行分析,而時域分析則採用非線性模型加入干擾動觀察所設計控制器的效能。由模擬的結果可以發現本論文所設計的超導儲能系統阻尼控制器,於變動風速及變動洋流速度下都可穩定工作,當系統加入不同的干擾分析時所採用的超導儲能系統阻尼控制器亦可有效控制系統變動特性。由單一風場及混合風場及洋流場注入電網之既有實功及虛功擾動亦可經由所提出的控制策略獲得有效改善。

    This dissertation presents a control scheme based on a superconducting magnetic energy storage (SMES) unit to achieve both power flow control and damping improvement of a large-scale offshore wind farm connected to a large power grid. The performance of the studied wind farm (WF) is simulated by an equivalent 80-MW induction generator (IG) consisting of forty 2-MW IGs while an equivalent 60-MW IG consisting of thirty 2-MW IGs is employed to study the characteristics of the marine-current farm (MCF). A damping controller for the SMES unit is designed by using modal control theory to contribute effective damping characteristics to the studied WF and the combined WF and MCF under different operating conditions. A frequency-domain approach based on a linearized system model using eigenvalue techniques to designed a damping controller. A time-domain scheme based on a nonlinear system model subject to disturbance conditions are both employed to validate the effectiveness of the proposed control scheme. It can be concluded from the simulated results that the proposed SMES unit combined with the designed damping controller is very effective to stabilize the studied WF and the combined WF and MCF under various operating conditions. The inherent fluctuations of the injected active power and reactive power of the WF and the combined WF and MCF to the power grid can also be effectively controlled by the proposed control scheme.

    Contents 摘要.............................................................................. I Abstract.......................................................................... II Acknowledgment ................................................................... III Contents……...................................................................... IV List of figures .................................................................. VII List of tables ................................................................... IX Symbols and abbreviations......................................................... X Chapter 1 Introduction............................................................ 1 1.1 Motivation ................................................................... 1 1.2 Literature survey............................................................. 3 1.2.1 SMES units applied to wind power generation systems ........................ 3 1.2.2 Technologies for SMES units implementation.................................. 3 1.2.3 SMES units applied to power flow control and modeling ...................... 4 1.2.4 Damping controller design of SMES units applied to transient-stability improvement............................................. 4 1.2.5 SMES units applied to multi-machine power systems........................... 5 1.2.6 Studies of combined ocean energy and wind energy ........................... 6 1.3 Contributions of this dissertation............................................ 6 1.4 Organization of the dissertation.............................................. 8 Chapter 2 Mathematical models..................................................... 9 2.1 Introduction ................................................................. 9 2.2 Wind-speed model.............................................................. 11 2.3 Wind-turbine model............................................................ 12 2.4 Mass-spring-damper model of wind-turbine ..................................... 13 2.5 Induction generator model..................................................... 14 2.6 Models for excitation capacitor bank, transmission lines, and local load ......................................................................... 14 2.7 Marine-current speed model.................................................... 15 2.8 Marine-current-turbine model ................................................. 16 2.9 SMES model.................................................................... 17 2.10 Summary...................................................................... 20 Chapter 3 A PID damping controller for the SMES unit tosuppress tie-line active-power fluctuations of a large-scale offshore wind farm ......................................... 21 3.1 Introduction ................................................................. 21 3.2 Linearized system............................................................. 22 3.3 Design of a PID SMES damping controller ...................................... 24 3.4 Summary....................................................................... 28 Chapter 4 Steady-state analysis of a large-scale offshore wind farm under various wind speeds.......................................... 29 4.1 Introduction ................................................................. 29 4.2 Power flow control ........................................................... 30 4.3 Analysis of closed-loop system eigenvalues under various windspeeds ................................................................... 32 4.4 Summary....................................................................... 34 Chapter 5 Transient simulations of a large-scale offshore wind farm under disturbance conditions ...................................... 35 5.1 Introduction ................................................................. 35 5.2 Three-phase short-circuit fault............................................... 36 5.3 Gust-wind speed disturbance................................................... 37 5.4 Noise-wind speed disturbance.................................................. 37 5.5 Summary....................................................................... 44 Chapter 6 A PID damping controller for a SMES unit tosuppress tie-line active-power fluctuations of a hybrid wind and marine-current farm .................................... 45 6.1 Introduction ................................................................. 45 6.2 Linearized system............................................................. 47 6.3 Design of a PID SMES damping controller ...................................... 49 6.4 Summary....................................................................... 53 Chapter 7 Steady-state analysis of a hybrid wind and marine-current farm under various operating conditions ............................................................. 54 7.1 Introduction ................................................................. 54 7.2 Power flow control ........................................................... 56 7.3 Analysis of system eigenvalues under various wind speeds and various marine-current speeds ................................................ 60 7.4 Summary....................................................................... 61 Chapter 8 Dynamic simulations of a hybrid wind and marine-current farm under disturbance conditions ....................... 62 8.1 Introduction ................................................................. 62 8.2 Torque disturbance ........................................................... 63 8.3 Gust-wind disturbance......................................................... 63 8.4 Disturbance of suddenly-changed local load.................................... 64 8.5 Summary....................................................................... 71 Chapter 9 Conclusions and further research directions ............................ 72 References........................................................................ 75 Appendix: Employed parameters .................................................... 80 Biography ........................................................................ 82

    [1] H. Chong, A. Q. Huang, M. E. Baran, S. Bhattacharya, W. Litzenberger, L. Anderson, A. L. Johnson, and A. A. Edris, “STATCOM impact study on the integration of a large wind farm into a weak loop power system,” IEEE Trans. Energy Conversion, vol. 23, no. 1, pp. 226-233, March 2008.
    [2] H. Gaztanaga, I. Etxeberria-Otadui, D. Ocnasu, and S. Bacha, “Real-time analysis of the transient response improvement of fixed-speed wind farms by using a reduced-scale STATCOM prototype,” IEEE Trans. Power Systems, vol. 22, no. 2, pp. 658-666, May 2007.
    [3] T. Y. Lee, “Operating schedule of battery energy storage system in a time-of-use rate industrial user with wind turbine generators: A multipass iteration particle swarm optimization,” IEEE Trans. Energy Conversion, vol. 22, no. 3, pp. 774-782, September 2007.
    [4] R. S. Bhatia, S. P. Jain, D. K. Jain, and B. Singh, “Battery energy storage system for power conditioning of renewable energy sources,” in Proc. International Conference on Power Electronics and Drive Systems, vol. 1, pp. 501-506, January 2006.
    [5] D. J. Swider, “Compressed air energy storage in an electricity system with significant wind power generation,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 95-102, March 2007.
    [6] S. Nomura, Y. Ohata, T. Hagita, H. Tsutsui, S. Tsuji-Iio, and R. Shimada, “Wind farms linked by SMES systems,” IEEE Trans. Applied Superconductivity, vol. 15, no. 2, pp. 1951-1954, June 2005.
    [7] S. C. Tripathy, M. Kalantar, and R. Balasubramanian, “Dynamics and stability of wind and diesel turbine generators with superconducting magnetic energy storage on an isolated power system,” IEEE Trans. Energy Conversion, vol. 6, no. 4, pp. 579-585, December 1991.
    [8] T. Kinjo, T. Senjyu, N. Urasaki, and H. Fujita, “Terminal-voltage and output-power regulation of wind-turbine generator by series and parallel compensation using SMES,” IEE Proc.-Generation, Transmission, and Distribution, vol. 153, no. 3, pp. 276-282, May 2006.
    [9] J. D. Rogers, R. I. Schemer, B. L. Miller, and J. F. Hauer, “30-MJ superconducting magnetic energy storage system for electric utility transmission stabilization,” IEEE Trans. Magnetics, vol. 71, no. 9, pp. 1099-1109, September 1983.
    [10] H. Shirahama, Y. Sakurai, Y. Matsuda, Y. Ishigaki, and K. Murai, “Instantaneous control method with a GTO converter for active and reactive powers in superconducting magnetic energy storage,” IEEE Trans. Power Electronics, vol. 9, no. 1, pp. 1-6, January 1994.
    [11] X. Jiang, X. Chu, X. Z. Wu, W. Liu, Y. C. Lai, Z. Wang, Y. M. Dai, and H. Lan, “SMES system for study on utility and customer power applications,” IEEE Trans. Applied Superconductivity, vol. 11, no. 1, pp. 1765-1768, March 2001.
    [12] A. B. Arsoy, Z. Wang, Y. Liu, and P. F. Ribeiro, “Transient modeling and simulation of a SMES coil and the power electronics interface,” IEEE Trans. Applied Superconductivity, vol. 9, no. 4, pp. 4715-4724, December 1999.
    [13] K. Shikimachi, H. Moriguchi, N. Hirano, S. Nagaya, T. Ito, J. Inagaki, S. Hanai, M. Takahashi, and T. Kurusu, “Development of MVA class HTS SMES system for bridging instantaneous voltage dips,” IEEE Trans. Applied Superconductivity, vol. 15, no. 2, pp. 1931-1934, June 2005.
    [14] M. G. Rabbani, J. B. X. Devotta, and S. Elangovan, “Application of simultaneous active and reactive power modulation of SMES unit under unequal α-mode for power system stabilization,” IEEE Trans. Power Systems, vol. 14, no. 2, pp. 547-552, May 1999.
    [15] Q. Jiang and M. F. Conlon, “The power regulation of a PWM type superconducting magnetic energy storage unit,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 168-174, March 1996.
    [16] L. Chen, Y. Liu, A. B. Arsoy, P. F. Ribeiro, M. Steurer, and M. R. Iravani, “Detailed modeling of superconducting magnetic energy storage (SMES) system,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 699-710, April 2006.
    [17] S. C. Tripathy and K. P. Juengst, “Sampled data automatic generation control with superconducting magnetic energy storage in power systems,” IEEE Trans. Energy Conversion, vol. 12, no. 2, pp. 187-192, June 1997.
    [18] M. Steurer, C. A. Luongo, P. R. Ribeiro, and S. Eckroad, “Interaction between a superconducting coil and the power electronics interface on a 100-MJ SMES system,” IEEE Trans. Applied Superconductivity, vol. 13, no. 2, pp. 1806-1809, June 2003.
    [19] B. C. Pal, “Robust pole placement versus root-locus approach in the context of damping interarea oscillations in power systems,” IEE Proc.-Generation, Transmission, and Distribution, vol. 149, no. 6, pp. 739-745, November 2002.
    [20] C. T. Hsu, “Enhancement of transient stability of an industrial cogeneration system with superconducting magnetic energy storage unit,” IEEE Trans. Energy Conversion, vol. 17, no. 4, pp. 445-452, December 2002.
    [21] Y. Mitani, K. Tsuji, and Y. Murakami, “Application of superconducting magnet energy storage to improve power system dynamic performance,” IEEE Trans. Power Systems, vol. 3, no. 4, pp. 1418-1425, November 1988.
    [22] Y. L. Tan and Y. Wang, “Augmentation of transient stability using a superconducting coil and adaptive nonlinear control,” IEEE Trans. Power Systems, vol. 13, no. 2, pp. 361-366, May 1998.
    [23] S. M. Sadeghzadeh, M. Ehsan, N. H. Said, and R. Feuillet, “Improvement of transient stability limit in power system transmission lines using fuzzy control of FACTS devices,” IEEE Trans. Power Systems, vol. 13, no. 3, pp. 917-922, August 1998.
    [24] C. Rehtanz, “Systemic use of multifunctional SMES in electric power systems,” IEEE Trans. Power Systems, vol. 14, no. 4, pp. 1422-1427, November 1999.
    [25] J. Yu, X. Duan, Y. J. Tang, and P. Yuan, “Control scheme studies of voltage source type superconducting magnetic energy storage (SMES) under asymmetrical voltage,” IEEE Trans. Applied Superconductivity, vol. 12, no. 1, pp. 750-753, March 2002.
    [26] F. Liu, S. G. Mei, D. M. Xia, Y. J. Ma, X. H. Jiang, and Q. Lu, “Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems,” IEEE Trans. Energy Conversion, vol. 19, no. 4, pp. 774-782, December 2004.
    [27] S. Dechanupaprittha, K. Hongesombut, M. Watanabe, Y. Mitani, and I. Ngamroo, “Stabilization of tie-line power flow by robust SMES controller for interconnected power system with wind farms,” IEEE Trans. Applied Superconductivity, vol. 17, no. 2, pp. 2365-2368, June 2007.
    [28] S. C. Tripathy, M. Kalantar, and R. Balasubramanian, “Dynamics and stability of wind and diesel turbine generators with superconducting magnetic energy storage on an isolated power system,” IEEE Trans. Energy Conversion, vol. 6, no. 4, pp. 579-585, December 1991.
    [29] C. J. Wu and Y. S. Lee, “Application of superconducting magnetic energy storage unit to improve the damping of synchronous generator,” IEEE Trans. Energy Conversion, vol. 6, no. 4, pp. 573-578, December 1991.
    [30] L. Wang, S. M. Lee, and C. L. Huang, “Damping subsynchronous resonance using superconducting magnetic energy storage unit,” IEEE Trans. Energy Conversion, vol. 9, no. 4, pp. 770-777, December 1994.
    [31] A. H. M. A. Rahim and A. M. Mohammad, “Improvement of synchronous generator damping through superconducting magnetic energy storage systems,” IEEE Trans. Energy Conversion, vol. 9, no. 4, pp. 736-742, December 1994.
    [32] A. H. M. A. Rahim, A. M. Mohammad, and M. R. Khan, “Control of subsynchronous resonant modes in a series compensated system through superconducting magnetic energy storage units,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 175-180, March 1996.
    [33] M. H. Ali, T. Murata, and J. Tamura, “A fuzzy logic-controlled superconducting magnetic energy storage for transient stability augmentation,” IEEE Trans. Control Systems Technology, vol. 15, no. 1, pp. 144-150, January 2007.
    [34] J. B. Simo and I. Kamwa, “Exploratory assessment of the dynamic behavior of multi-machine system stabilized by a SMES unit,” IEEE Trans. Power Systems, vol. 10, no. 3, pp. 1566-1571, August 1995.
    [35] B. C. Pal, A. H. Coonick, and D. C. Macdonald, “Robust damping controller design in power systems with superconducting magnetic energy storage devices,” IEEE Trans. Power Systems, vol. 15, no. 1, pp. 320-325, February 2000.
    [36] K. S. Tam and P. Kumar, “Application of superconductive magnetic energy storage in an asynchronous link between power systems,” IEEE Trans. Energy Conversion, vol. 5, no. 3, pp. 436-444, September 1990.
    [37] I. Ngamroo, Y. Mitani, and K. Tsuji, “Application of SMES coordinated with solid-state phase shifter to load frequency control,” IEEE Trans. Applied Superconductivity, vol. 9, no. 2, pp. 322-325, June 1999.
    [38] Y. Shirai, T. Nitta, and M. Yamada, “Experimental study on system stability evaluation in parallel running of a superconducting generator and a SMES,” IEEE Trans. Applied Superconductivity, vol. 12, no. 1, pp. 890-895, March 2002.
    [39] S. E. B. Elghali, R. Balme, K. L. Saux, M. E. H. Benbouzid, J. F. Charpentier, and F. Hauville, “A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine,” IEEE Journal of Oceanic Engineering, vol. 32, no. 4, pp. 786-797, October 2007.
    [40] W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, “Hydrodynamics of marine current turbines,” Renewable Energy, vol. 31, no. 2, pp. 249-256, February 2006.
    [41] L. Myers and A. S. Bahaj, “Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race,” Renewable Energy, vol. 30, no. 11, pp. 1713-1731, September 2005.
    [42] P. M. Anderson and A. Bose, “Stability simulation of wind turbine system,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, December 1983.
    [43] J. G. Slootweg, H. Polinder, and W. L. Kling, “Representing wind turbine electrical generating systems in fundamental frequency simulations,” IEEE Trans. Energy Conversion, vol. 18, no. 4, pp. 516-524, December 2003.
    [44] D. J. Trudnowski, A. Gentile, J. M. Khan, and E. M. Petritz, “Fixed-speed wind-generator and wind-park modeling for transient stability studies,” IEEE Trans. Power Systems, vol. 19 , no. 4 , pp. 1911-1917, November 2004.
    [45] S. M. Muyeen, M. H. Ali, R. Takahashi, T. Murata, J. Tamura, Y. Tomaki, A. Sakahara, and E. Sasano, “Transient stability analysis of wind generator system with the consideration of multi-mass shaft model,” in Proc. 2006 Power Electronics and Drives Systems, vol. 1, pp. 511-516, January 2006.
    [46] P. Cartwright, L. Holdsworth, J. B. Ekanayake, and N. Jenkins, “Co-ordinated voltage control strategy for a doubly-fed induction generator (DFIG)-based wind farm,” IEE Proc.-Generation, Transmission, and Distribution, vol. 151, no. 4, pp. 495-502, July 2004.
    [47] CIGRE, Modeling New Forms of Generation and Storage, TF.01.10, Fifth draft, June 2000.
    [48] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill Book Company, 1986.
    [49] L. Wang, S. J. Mau, and C. C. Chuko, “Suppression of common torsional mode interactions using shunt reactor controllers,” IEEE Trans. Energy Conversion, vol. 8, no. 3, pp. 539-545, September 1993.

    下載圖示 校內:2012-06-22公開
    校外:2014-06-22公開
    QR CODE