| 研究生: |
周冠宏 Jou, Kuan-Hong |
|---|---|
| 論文名稱: |
利用雷射退火改善有機高分子發光二極體
元件效率之研究 Improvement of Polymer Light-Emitting Diodes by Laser Annealing |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 雷射退火 、有機發光二極體 、高分子 |
| 外文關鍵詞: | Laser Annealing, Organic light-emitting diode, Polymer |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討以高分子材料聚[1-甲氧基-4-(2’-乙基-己氧基)-2, 5-苯乙烯]為主動層之紅光元件透過不同退火方式改善元件之效率與表現。在本篇論文中,根據聚[1-甲氧基-4-(2’-乙基-己氧基)-2, 5-苯乙烯] 的吸收光譜範圍位於綠光波段,因此我們使用波長532奈米的綠光雷射作為雷射源,針對發光層搭配不同的雷射退火條件探討有機高分子發光二極體的物性與元件表現。
在我們的實驗中,主要針對玻璃基板和可撓式基板(聚對苯二甲酸乙二酯)製作單層聚[1-甲氧基-4-(2’-乙基-己氧基)-2,5-苯乙烯]混合小分子電洞傳輸材料聯苯衍生物的元件,根據實驗的結果,我們發現雷射光處理不僅可以改善聚[1-甲氧基-4-(2’-乙基-己氧基)-2,5-苯乙烯]混合小分子電洞傳輸材料所造成的表面粗糙度,降低元件的驅動電壓,而且能提升光激發光的強度。此外,經由空間電荷限制電流法,我們也發現雷射光處理可提升主動層之電子的遷移率,增加載子的再結合效率,相較於加熱處理,雷射光處理可大幅提升元件整體效率。目前,針對玻璃基板而言,我們元件最佳的製備條件是雷射功率30 mW處理5分鐘,元件亮度可達4367 cd/m2,而元件效率可達1.85 cd/A;針對可撓式基板 (聚對苯二甲酸乙二酯)而言,最佳的雷射退火功率仍是30 mW,雷射退火處理10分鐘可達最佳的元件效率(亮度: 1888 cd/m2,效率2.61 cd/A),熱與雷射同時退火處理10分鐘可達最佳的元件亮度(亮度: 2551 cd/m2,效率: 1.78 cd/A)。與其他團隊大部份所採用的加熱處理作元件比較之後,本論文重要的優勢在於我們發現雷射退火處理適合應用在低溫處理可撓式基板和可以節省一半以上的製程時間。
In this thesis, we concentrate on how to improve the performance of poly [2-methoxy-5- (2’-ethylhexyloxy)- 1,4-phenylene vinylene] MEH-PPV-based light emitting diodes by different methods of annealing. We adopted 532 nm green laser as the annealing source because the maximum intensity of MEH-PPV absorption spectrum is at the range of green light. In addition, we researched into the influence of emitting layer under different conditions of laser annealing which improve the physical property of emitting layer and device performance.
In our experiments, we blended MEH-PPV with (N,N’-diphenyl-N,N’-bis (1-naphthyl)-(1,1’-biphenyl)-4,4’-diamine) (NPB) as the emitting layer and fabricated single layer light emitting diodes of glass and Polyethylene terephthalate (PET) substrates. Based on the results of experiments, we find laser annealing can decrease the surface roughness, lower the turn-on voltage of devices and increase of PL intensity. Moreover, we can observe laser annealing can enhance the electron mobility in active layer and raise the possibility of carriers’ recombination efficiency. Compared with thermal annealing, laser annealing can improve the efficiency of device to a remarkable extent. For the device on glass substrate, the optimum parameter is 30 mW laser annealing for 5 minutes. Luminance is 4367 cd/m2 and current efficiency is 1.85 cd/A. Furthermore, for the device on PET substrate, the appropriate power of laser is still 30 mW. Laser annealing for 10 minutes can achieve the highest efficiency (luminance is 1888 cd/m2 and current efficiency is 2.61 cd/A) and simultaneous thermal and laser annealing for 10 minutes can realize the best luminance (luminance is 2551 cd/m2 and current efficiency is 1.78 cd/A). The most important advantage of this thesis is that laser annealing is suitable for low energy treatment and we can reduce the processing time by laser annealing when compared with thermal annealing.
Reference
[1] 陳金鑫 黃孝文 “OLED Materials and Devices of Dream Displays”
[2] 陳來成, “Development of Polymer Light Emitting Display, PLED”,高分子電激發光顯示技術研討會,經濟部工業局,2001.
[3] 徐玉娟,“有機電激發光顯示器的發展現況”,科學月刊,第32卷,第2 期,2001 P.123
[4] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett., vol. 51, 913, (1987).
[5] R.H. Partridge. “Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations,” Polymer vol. 24, 733, (1983).
[6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, 11 (1990).
[7] F.C. Krebs, Holger Spanggard, Torben Kjær, M. Biancardo and Jan Alstrup, “Large area plastic solar cell modules,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. vol. 138, 106 (2007).
[8] S. H. Kwon, S. Y. Paik and J. S. Yoo, “Electroluminescent properties of MEH–PPV light-emitting diodes fabricated on the flexible substrate,” Synth. Met., vol. 130, 55-60 (2002).
[9] K. R. Lin, C. H. Kuo, L. C. Kuo, K. H. Yang, M. K. Leung and K. H. Hsieh, “New hole-transport polyurethanes applied to polymer light-emitting diodes,” Eur. Polym. J., vol. 43, 4279 (2007).
[10] J. Kido, K. Hongawa, K. Okuyama and K. Nagai, “White lightemitting organic electroluminescent devices using the poly(Nvinylcarbazole) emitter layer doped with three fluorescent dyes,” Appl. Phys. Lett., vol. 64, 815 (1993).
[11] J. S. Huang, G. Li, Elbert Wu, Q. F. Xu and Y. Yang, “Achieving High-Efficiency Polymer White-Light-Emitting Devices,” Adv. Mater. vol. 18, 114–117 (2006).
[12] A. Einstein, “The Quantum Theory of Radiation,” Z. Phys. vol. 18, 121 (1917).
[13] R. W. Ladenburg, “Research on the anomalous dispersion of gases,” Z. Phys.
vol. 48, 15 (1928).
[14] Willis E. Lamb and R. C. Retherford, “Fine Structure of the Hydrogen Atom by a Microwave Method,” Phys. Rev. vol. 72, 241 (1947).
[15] A. Kastler, “Optical Methods of Atomic Orientation and of Magnetic Resonance,” Journal of the Optical Society of America, vol. 47 ,460 (1956).
[16] G. Gould, B. Senitzky and S. Cutler, “Millimeter-Wave
Amplification by Resonance Saturation,” Phys. Rev. vol. 130, 1460 (1963).
[17] J. P. Gordon, H. J. Zeiger and C. H. Townes, “Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3”, Phys. Rev. vol. 95, 282 (1954).
[18] A. J. Gross, A Thomas and R. W. Herrmann, “History of lasers,” World J Urol vol. 25, 217 (2007).
[19] J. Hecht, “Short history of laser development”, Opt. Eng. vol. 49, 091002 (2010).
[20] M. C. Choia, Y. Kimb and C. S. Ha,” Polymers for flexible displays: From material selectionto device applications,” Prog. Polym. Sci. vol. 33, 581–630 (2008).
[21] S. A. Jabarin “Strain-Induced Crystallization of Poly(Ethylene terephthalate),” Polymer Engineering and Science, vol. 32, 1341 (1992).
[22] D. R. Cairns, D. C. Paine and G. P. Crawford, “The Effect of Thermal Shrinkage on Indium Tin Oxide Coated Polyethylene Terephthalate for Flexible Display Applications,” SID Dig. vol. 32, 654 (2001).
[23] G. Gustafuson, Y. Cao and G.M. Treacy, F. Klavetter, N. Colaneri, A.J.Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,”
Nature, vol. 357, 477, (1992).
[24] T. W. Lee and O. O. Park, “The Effect of Different Thermal annealings on the Luminescence Efficiency of Polymer Light-Emitting Diodes,” Adv. Mater. vol. 12, 801 (2000).
[25] T. W. Lee, O. O. Park and L. M. Do, Taehyoung Zyung “Improvement of EL efficiency in polymer light-emitting diodes by thermal annealings,” Synth. Met. vol. 17, 249 (2001).
[26] H. L. Chou,1 K. F. Lin, Y. L. Fan and D. C. Wang, “Enhancing Quantum Efficiencty of MEH-PPV Through the reduction of Chain Aggregations by thermal Treatment,” J. of Polym. Sci. B: Polym. Phys., vol. 43, 1705 (2005).
[27] T. Q. Nguyen, I. B. Martini, J. Liu, and Benjamin J. Schwartz , “Controlling Interchain Interactions in Conjugated Polymers: The Effects of Chain Morphology on Exciton-Exciton Annihilation and Aggregation in MEH-PPV Films,” J. Phys. Chem. B, vol. 104, 237 (2000).
[28] R. Pate and A.D. Stiff-Roberts, “The impact of laser-target absorption depth on the surface and internal morphology of matrix-assisted pulsed laser evaporated conjugated polymer thin films,” Chem. Phys. Lett., vol. 477, 406 (2009).
[29] Y. C. Yen, C. C. Cheng, Y. S. Wang, Y. L. Chu, C. H. Lu , W. Yang and F. C. Chang “Surface modification of poly (2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV) by confined photo-catalytic oxidation,” J. Colloid Interface Sci., vol. 368, 633 (2012).
[30] D. Ma, J. M. Lupton, R. Beavington, P. L. Burn and I. D .W. Samuel, “Improvement of luminescence efficiencyby electrical annealing in single-layer organic light-emitting diodes based on a conjugated dendrimer,” J. Phys. D: Appl. Phys., vol. 35, 520 (2002).
[31] A. O. Sevim and S. Mutlu “Post-fabrication electric field and thermal treatment of polymer light emitting diodes and their photovoltaic properties,” Org. Electron., vol. 10, 18 (2009).
[32] K. Kubota, T. Kato and C. Adachi, “Control of the molecular orientation of a 2,2(')-bithiophene-9,9-dioctylfluorene copolymer by laser annealing and subsequent enhancement of the field effect transistor characteristics”, Appl. Phys. Lett. vol. 95, 073303 (2009).
[33] G.. Destriau, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Chem, Phys., vol. 38, 2024, (1963).
[34] M. Pope, H. P. Kallmann and P. Magnante, J, “Electroluminescence in Organic Crystals” Chem. Phys. , vol. 38, 2042 (1963).
[35] B. Chen, C. S. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian and W. Zhu, “Electroluminescence mechanism in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host,” J. Appl. Phys., vol. 39, 1190 (2000).
[36] M. Klessinger and J. Michl, “Exicted states and photochemistry of Organic Molecules,” VCH Publishers, New York (1995).
[37] Y. Liu, M. S. Liu and A. K. Y. Jen, “Organic light-emitting diodes (OLED) technology: materials, devices and display technologies,” Acta Polym. vol. 50, 105 (1999).
[38] Robert Eisberg and Robert Resnick, “Quantum Physics of Atoms. Molecules, Solids, Nuclei, and Particles,” 2nd edition., p.313 (1974).
[39] M. A. Baldo, D. F. O Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, vol. 395, 151 (1998).
[40] S. M. Sze, “Physics of semiconductor Devices,” 2nd edition., p.65, 301 (1985).
[41] S. M. Sze, “Physics of semiconductor Devices,” 2nd edition., p.261 (1985).
[42] S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, h. Westweber, P. F. Seidler and W. Riess, ”Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2,” Phys. Rev., B 60, 8791 (1999).
[43] H. M. Lee, K. H. Choi, D. H. Hwang, L. M. Do and T. H. Zyung, ”Use of ionomer as an electron injecting and hole blocking material for polymer light-emitting diode,” Appl. Phys. Lett., vol. 72, 19 (1998).
[44] J. S. Huang, G. Li, E. Wu, Q. F. Xu, and Y. Yang, “Achieving high-efficiency Polymer White-Light-Emitting Devices,” Adv. Mater., vol. 18, 114–117 (2006).
[45] G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson, “Oxidation of a polycrystalline silver foil by reaction with ozone,” Appl. Surf. Sci. vol. 183, 191 (2001).
[46] L. S. hung, C. W. Tang, M. G. Mason, P. Raychaudhuri and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett., vol. 78, 544 (2001).
[47] H. T. Lu and M. Yokoyama, “Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes,” J. Cry. Grow., vol. 260, 286 (2004).
[48] L. S. hung, C. W. Tang, M. G. Mason, P. Raychaudhuri and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett., vol. 78, 544 (2001).
[49] U. Lang, E. Muller, N. Naujoks and J. Dual. “Microscopical investigations of PEDOT:PSS thin films,” Adv. Funct. Mater., vol. 19, 1215 (2009).
[50] Liam S. C. Pingree, Bradley A. Macleod and David S. Ginger “The changing face of PEDOT:PSS films: Substrate, bias, and processing effects on vertical charge transport,” J. Phys. Chem. C, vol. 112, 21 (2008).
[51] F. Xu, J. Y. Ouyang, Y. Yang. T. Ito and J. Kido,” Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification” Appl. Phys. Lett., 83, 23, (2003).
[52] H. M. Lee, K. H. Choi, D. H. Hwang, L. M. Do and T. H. Zyung, ”Use of ionomer as an electron injecting and hole blocking material for polymer light-emitting diode,” Appl. Phys. Lett., vol. 72, 19 (1998).
[53] J. S. Huang, G. Li, E. Wu, Q. F. Xu, and Y. Yang, “Achieving high-efficiency Polymer White-Light-Emitting Devices,” Adv. Mater., vol. 18, 114–117 (2006).
[54] Z. Z. You and J. Y. Dong, “Electrical and optical characteristics of polymer light-emitting devices with surface-treated indium-tin-oxide electrodes,” Microelectron. J., vol. 38, 108–113 (2007).
[55] M. Ishii, T. Mori, H. Fujikawa, S. Tokito and Y. Taga, “Improvement of organic electroluminescent device performance by in situ plasma treatment of indium}tin-oxide surface,” J. Lumines., vol. 87, 1165 (2000).
[56] H. T. Lu and M. Yokoyama, “Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes,” J. Cry. Grow., vol. 260, 286-190 (2004).
[57] Y. Shi, J. Liu, and Y. Yang, “Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency,” J. Appl. Phys., vol. 87, 9 (2000).
[58] S. N. Hsieh, T. Y. Kuo, P. C. Hsu, T. C. Wen and T. F. Guo, “Study of polymer blends on polymer light-emitting diodes,” Mate. Chem. Phys., vol. 106, 70 (2007).
[59] Jayesh M. Bharathan and Y. Yang, “Polymer/metal interfaces and the performance of polymer light-emitting diodes,” J. Appl. Phys., vol. 84, 6 (1998).
[60] J. Liu, T. F. Guo and Y. Yang,” Effects of thermal annealing on the performance of polymer light emitting diodes,” J. Appl. Phys., vol. 91, 3 (2002)
[61] K. L. Babcock and C. B. Prater, “Phase imaging : Beyond Topography,” Digital Instruments, Inc.
[62] Y. Kim and C. M. Lieber, “Machining oxide thin films with an atomic force microscope : pattern and object formation on the nanometer scale,” Science, vol. 257, 375 (1992).
[63] Adam J. Moulé and K. Meerholz “Controlling Morphology in Polymer–Fullerene Mixtures,” Adv. Mater., vol. 20, 240 (2008).
[64] J. Liu and Y. Yang, “Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices,” Adv. Funct. Mater., vol. 6, 11 (2001).
[65] http://www.mobot.org/jwcross/spm/notes.htm
[66] T. H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), 9209 (2001).
[67] A. R. Tameev, S. V. Novikov, A. V. Vannikov, E. M. Nechvolodova and S. A. Arnautov, “Charge Mobility and Photovoltaic Behavior of MEH-PPV Films Prepared by Various Methodes,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, 1-4244-0016-3 (2006).
[68] J. h Zou, J. Liu, H. b. Wu, W. Yang, J. b. Peng and Y. Cao “High-efficiency and good color quality white light-emitting devices based on polymer blend,” Org. Electron., vol. 10, 843 (2009).
[69] J. Gao, H. You, Z. P Qin, J. F. Fang, D. G. Ma, X. H. Zhu and W. Huang, “High efficiency polymer electrophosphorescent light-emitting diodes,” Semicond. Sci. Technol., vol. 20, 805 (2005).
[70] S. Quan, F. Teng, Z. Xu, L. Qian, Y. Wang, “Improved polymer light-emitting diodes by the tuning of charge balance,” Solid. State. Electro., 50, 1506 (2006).
[71] R. H. Lee and H. H. Lai, “Enhancing electroluminescence performance of MEH-PPV based polymer light emitting device via blending with organosoluble polyhedral oligomeric silsesquioxanes,” Eur. Polym. J. vol. 43,715 (2007).
[72] G. Li, V. Shrotriya, J. S. Huang, Y. YAO, T. Moriarty, Keith Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater., vol. 4, 864 (2005).
[73] K. L.Babcock, C. B. Prater, “Phase Imaging: Beyond Topography,” handbook of digital instruments (2001).
[74] S. H. Chen, A. C. Su, and H. L. Chou ,“Phase Behavior and Molecular Aggregation in Bulk Poly(2-methoxy-5-(2¢-ethylhexyloxy)-1,4-phenylenevinylene),”
Macromolecules, vol. 37, 167 (2004).
[75] T. S. Kim et al., “Significantly Improved Power Efficiency of Organic Light,” Mol. Cryst. Liq., Cryst. vol. 458, 217 (2006).
[76] H. J. Chen, L. Y. Wang and W. Y. Chiu,“Effects of annealing treatment on the properties of MEH-PPV/titania hybrids prepared via in situ sol–gel reaction,” Eur. Polym. J., vol. 43, 4750 (2007).
[77] S. N. Hsieh, T. Y. Kuo, T. C. Wen, T. F. Guo and Y. L. Lee, “High-Efficiency Polymer Light-Emitting Doide via Al Interfacial Modification Using Polyurethane,” Jpn. J. Appl. Phys., vol. 45, L773 (2006).
[78] I. Singhetal. “Enhanced luminance of MEH-PPV based PLEDs using single walled carbon Nanotube composite as an electron transporting layer,”J. Lumin., vol. 130, 2157 (2010).
[79] H. S. Kang, K. H. Kim, M. S. Kim, K. T. Park, K. M. Kim, T. H. Lee, J. Joo, K. Kim, D. W. Lee and J. I. Jin, “Electrical and optical characteristics of various PPV derivatives (MEH-PPV, CzEH-PPV, OxdEH-PPV),” Curr. Appl. Phys., vol. 1, 443 (2006).
校內:2022-12-30公開