| 研究生: |
萬泰麟 Wan, Tai-Lin |
|---|---|
| 論文名稱: |
非接觸式感應充電技術應用於小家電裝置之研究 Study of the Contactless Inductive Charging Technique for Small Household Electrical Appliances |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 非接觸 、感應充電 、家電 、電能傳輸 、感應饋電 |
| 外文關鍵詞: | contactless, electrical appliances, inductive charging technique |
| 相關次數: | 點閱:87 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究非接觸式感應電能傳輸技術,並將其應用於小家電裝置之感應充電系統。文中首先探討非接觸式感應電能傳輸技術之基本原理及其應用範疇,進而論述影響系統操作之相關因素。就感應充電系統之耦合結構設計,係經由比較分析抉擇適當鐵芯結構,且針對所需補償電路進行分析及設計,再導入反射阻抗概念探討充電時負載電流變化對感應耦合之影響。非接觸式感應充電電路則採用雙閉迴路結構,俾維持感應耦合效率兼作過電流保護,並以2.5mm之氣隙規格進行系統電路參數設計。而後將所設計之感應充電系統予以電路實現,再用600mAh鋰電池作為充電負載,測試其於充電過程中隨充電電流變化時之耦合效率表現。經由實測驗證,本文所提非接觸式感應充電系統確具可行性,其於充電過程中之最高耦合效率可達82.1%。
This thesis investigates the contactless power transmission system with a small gap for small household electrical appliances’ inductive charging system. At first the applications and fundamental principles of contactless power transmission systems are studied, then the thesis followed by the discussion of the factors associated with the operating of system. The design of coupling structure is established by analyzing the comparison of different adequate cores. Then, the thesis focuses on the principle and design method of the compensation circuit to explain the practical design. The concept of reflected impedance is also introduced to understand the influence of the secondary load in the whole system. As for the circuit structure, it uses double closed-loop control to keep the coupling efficiency and provide overcurrent protection. Finally, this system is implemented in real circuit to be used to charge a 600mAh li-ion battery. The best coupling efficiency is 82.1% in charging processes with 2.5mm gap.
[1] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
[2] B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC, 1994, pp. 418-423.
[3] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, 1997.
[4] D. A. G. Pedder, A. D. Brown, and J. A. Skinner, “A contactless electrical energy transmission system,” IEEE Trans. Ind. Electron. vol. 46, no. 1, pp. 23-30, 1999.
[5] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
[6] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
[7] F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
[8] K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
[9] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
[10] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
[11] Y. Jang and M. M. Jovanovic, “A new soft-switched contactless battery charger with robust local controllers,” in Proc. IEEE INTELEC, 2003, pp. 473-479.
[12] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, vol. 2, pp. 797-801.
[13] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
[14] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” in Proc. IEEE INTERMAG, 1999, p. 10.
[15] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
[16] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
[17] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Characteristics of the desk with cord-free power supply,” in Proc. IEEE INTERMAG, 2002, p. 6.
[18] D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., Addison-Wesley, 1989.
[19] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors, ” in Proc. IEEE PESC, 2003, vol. 2, pp. 853-860.
[20] J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 127-131, 1994.
[21] N. Xi and C. R. Sullivan, “Simplified high-accuracy calculation of eddy-current loss in round-wire windings,” in Proc. IEEE PESC, 2004, vol. 2, pp. 873-879.
[22] S. Eroglu, G. Friedman, and R. L. Magin, “Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2787-2789, 2001.
[23] A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
[24] A. W. Lotfi and F. C. Lee, “Proximity losses in short coils of circular cylindrical windings,” in Proc. IEEE PESC, 1992, vol. 2 pp. 1253- 1260.
[25] A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, “Equivalent circuits for transformers based on one-dimensional propagation: accounting for multilayer structure of windings and ferrite losses,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
[26] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
[27] Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. ICEMS, 2003, vol. 1, pp. 253-256.
[28] J. Hirai, T. W. Kim, and A. Kawamura, “Study on crosstalk in inductive transmission of power and information,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1174-1182, 1999.
[29] 李依穎,非接觸式感應饋電技術應用於可動機具之研究,國立成功大學電機工程系碩士論文,2006。
[30] 羅國原,非接觸式感應充電技術應用於可攜式電子產品之研究,國立成功大學電機工程系碩士論文,2006。
[31] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
[32] J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON, 1996, vol. 2, pp. 711-714.
[33] J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, 2000.
[34] C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. PowerCon., 2000, vol. 2, pp. 1039-1044.
[35] H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol. 36, pp. 444-451, 2000.
[36] J. Murakami, F. Sato, T. Watanabe, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Staoh, “Consideration on cordless power station-contactless power transmission system,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
[37] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. PowerCon., 2000, vol. 1, pp. 85-90.
[38] K. W. E. Cheng and Y. Lu, “Development of a contactless power converter,” in Proc. IEEE ICIT, 2002, vol. 2, pp. 786-791.
[39] F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core couplers for inductive chargers,” in Proc. PCC, 2002, vol. 2, pp. 850-854.
[40] H. Miura, S. Arai, F. Sato, H. Matsuki, and T. Sato, “A synchronous rectification using a digital PLL technique for contactless power supplies,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3997-3999, 2005.
[41] R. L. Lin and Y. T. Chen, “Electronic ballast for fluorescent lamps with phase-locked loop control scheme,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 254-262, 2006.
[42] R. L. Lin and M. C. Yeh, “Inductor phase feedback for phase-locked loop control of electronic ballasts (PSRT),” in Proc. IEEE IAS, 2005, pp. 2763-2769.
[43] F. F. A. Van der Pijl, J. A. Ferreira, P. Bauer, and H. Polinder, “Design of an inductive contactless power system for multiple users,” in Proc. IEEE IAS, 2006, vol. 4, pp. 1876-1883.
[44] TPS5430 Data Sheet, Texas Instruments Inc., 2006.
[45] bq24002 Data Sheet, Texas Instruments Inc., 2004.