簡易檢索 / 詳目顯示

研究生: 葉筌傑
Yeh, Chuan-Chieh
論文名稱: 傳統與超導同步發電機及其應用於混合離岸式風場連接至多機電力系統之穩定度分析
Stability Analysis of Conventional and Superconducting Synchronous Generators and Their Applications to a Hybrid Offshore Wind Farm Connected to a Multi-Machine Power System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 201
中文關鍵詞: 傳統同步發電機超導同步發電機雙饋式感應發電機超導儲能系統超導故障限流器
外文關鍵詞: Conventional synchronous generator, superconducting synchronous generator, doubly-fed induction generator, superconducting magnetic energy storage, superconducting fault current limiter
相關次數: 點閱:135下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係針對傳統同步發電機與超導同步發電機之特性,提出兩種系統架構,系統架構一為採用傳統同步發電機及超導同步發電機併聯至電網所組成之大規模電力系統;系統架構二為以超導同步發電機為基礎與以雙饋式感應發電機為基礎所組成之混合離岸式風場,連接至含與未含超導同步發電機之三機-九匯流排多機電力系統。本論文於三相平衡系統條件下,採用交直軸等效電路模型以建立完整系統之數學模型,並分別針對超導儲能系統以設計比例-積分-微分及相位超前-落後振盪阻尼控制器,以俾抑制電力系統之低頻振盪,最後加入超導故障限流器以改善其暫態特性。本論文於穩態分析方面,分析同步發電機在不同工作條件、風速變動以及海底電纜長度變動等情況下,對系統穩定度特性造成之影響;於暫態及動態方面,則分析轉矩干擾、風速變動及三相短路等模擬結果,並比較系統加入超導故障限流器及阻尼控制器前後所改善之穩定度。

    This thesis presents stability analysis results of two system configurations using a conventional synchronous generator (SG) and a superconducting synchronous generator (SCSG). System configuration 1 is a large-scale power system consisting of an SG and an SCSG connected to power grid. System configuration 2 is a three-generator nine-bus multi-machine power system while one of the three SGs is replaced by an SCSG and an integrated SCSG-based and doubly-fed induction generator (DFIG)-based hybrid offshore wind farm (OWF) is connected to the system. The q-d axis equivalent-circuit model is derived to establish the complete system model under three-phase balanced condition. The designed proportional-integral-derivative (PID) and the lead-lag oscillation damping controllers (ODC) of superconducting magnetic energy storage (SMES) unit to damp low-frequency oscillations of the studied systems with a superconducting fault-current limiter (SFCL) are carried out. Steady-state characteristics of the studied systems under various operating conditions of the SG, the SCSG, wind speed, and length of lines are performed. Dynamic and transient simulations of the studied systems subjected to a wind-speed disturbance, a torque disturbance, and a three-phase short-circuit fault at the studied power systems with and without the SFCL and the designed ODC are also compared.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XVI 符號說明 XX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 3 1-3 本論文之貢獻 11 1-4 研究內容概述 12 第二章 系統數學模型 15 2-1 前言 15 2-2 系統架構 16 2-3 同步發電機之數學模型 20 2-3-1 傳統同步發電機 20 2-3-2 超導同步發電機 23 2-4 激磁機之數學模型 27 2-5 蒸汽渦輪機之數學模型 28 2-6 調速機之數學模型 30 2-7 風速之數學模型 31 2-8 風渦輪機之數學模型 33 2-9 旋角控制器之數學模型 36 2-10 風渦輪機與發電機間轉矩之數學模型 37 2-11 風力發電機之數學模型 39 2-11-1 雙饋式感應發電機 39 2-11-2 超導同步發電機 41 2-12 電力電子轉換器之數學模型 44 2-12-1 雙饋式感應發電機之轉子側轉換器 44 2-12-2 雙饋式感應發電機之電網側轉換器 46 2-12-3 超導同步發電機之定子側轉換器 47 2-12-4 超導同步發電機之電網側轉換器 49 2-13 超導儲能系統之數學模型 50 2-14 超導故障限流器之數學模型 55 第三章 超導儲能系統之阻尼控制器設計 58 3-1 前言 58 3-2 超導儲能系統之回授訊號選擇 59 3-3 極點安置法設計比例-積分-微分控制器 65 3-4 相位補償法設計相位超前-落後控制器 71 第四章 系統之穩態分析 79 4-1 前言 79 4-2 系統架構一之穩態分析 79 4-2-1 傳統同步發電機之工作點變動 80 4-2-1-1 實功率變動之穩態分析 80 4-2-1-2 端電壓變動之穩態分析 91 4-2-2 超導同步發電機之工作點變動 100 4-2-2-1 實功率變動之穩態分析 100 4-2-2-2 端電壓變動之穩態分析 110 4-3 系統架構二之穩態分析 119 4-3-1 風速變動之穩態分析 119 4-3-1-1 風速變動之穩態工作點 120 4-3-1-2 風速變動之特徵值 126 4-3-2 海底電纜長度變動之穩態分析 132 4-3-2-1 海底電纜長度變動之穩態工作點 132 4-3-2-2 海底電纜長度變動之特徵值 140 第五章 系統之動態與暫態分析 145 5-1 前言 145 5-2 系統架構一之動態與暫態分析 145 5-2-1 轉矩干擾之動態分析 146 5-2-2 三相短路之暫態分析 158 5-3 系統架構二之動態與暫態分析 166 5-3-1 風速變動之動態分析 166 5-3-2 三相短路之暫態分析 173 第六章 結論與未來研究方向 185 6-1 結論 185 6-2 未來研究方向 187 參考文獻 189 附錄 197 作者簡介 200

    [1] 經濟部能源局。http://www.moeaboe.gov.tw/, retrieved date: May 20, 2016.
    [2] 陳引幹,零電阻時代的超導陶瓷,科學發展月刊,第375期,第6-11頁,2004年3月。
    [3] S. M. Osheba, M. A. A. S. Alyan, and Y. H. A. Rahim, “Comparison of transient performance of superconducting and conventional generators in a multimachine system,” IEE Proceedings C - Generation, Transmission and Distribution, vol. 135, no. 5, pp. 389-395, Sep. 1988.
    [4] Y. H. A. Rahim, M. A. A. S. Alyan, and S. M. Osheba, “Stability of multi-machine system incorporating a superconducting alternator,” IEEE Trans. Energy Conversion, vol. 3, no. 3, pp. 458-464, Sep. 1988.
    [5] M. A. A. S. Alyan, Y. H. A. Rahim, and S. M. Osheba, “Assessment of steady state stability of a multi-machine power system with and without a superconducting alternator,” IEEE Trans. Power Systems, vol. 5, no. 3, pp. 730-736, Aug. 1990.
    [6] 江榮城,台灣風力發電運轉經驗及未來展望,環保資訊月刊,第97期,第11-18頁,2006年5月。
    [7] D. L. Prior, M. A. A. S. Alyan, and C. A. Anyaeji, “Equivalent circuit representation of a superconducting alternator,” IEE Proceedings C - Generation, Transmission and Distribution, vol. 129, no. 6, pp. 266-277, Nov. 1982.
    [8] T. Nitta and T. Okada, “Parallel running test of the 20 kVA superconducting synchronous generator and a conventional one,” IEEE Trans. Magnetics, vol. 24, no. 2, pp. 1469-1472, Mar. 1988.
    [9] T. Nitta and T. Okada, “Transient characteristics of parallel running of the 20 kVA superconducting synchronous generator and a conventional one,” IEEE Trans. Magnetics, vol. 25, no. 2, pp. 1775-1778, Mar. 1989.
    [10] J. G. Slootweg and W. L. Kling, “Aggregated modelling of wind parks in power system dynamics simulations,” in Proc. 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, Jun. 23-26, 2003, pp.1-6.
    [11] Y. Terao, M. Sekino, and H. Ohsaki, “Comparison of conventional and superconducting generator concepts for offshore wind turbines,” IEEE Trans. Applied Superconductivity, vol. 23, no. 3, p. 5200904, Jun. 2013.
    [12] N. Kim, G. H. Kim, K. M. Kim, M. Park, I. K. Yu, S. Lee, E. Song, and T. W. Kim, “Comparative analysis of 10 MW class geared and gearless type superconducting synchronous generators for a wind power generation system,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5202004, Jun. 2012.
    [13] G. H. Kim, K. M. Kim, H. J. Sung, S. J. Jung, S. Kim, M. Park, I. K. Yu, and S. Lee, “Control scheme of a superconducting synchronous generator applied to a grid-connected wind power generation system,” in Proc. 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Changwon, South Korea, Oct. 21-24, 2012, pp. 1-4.
    [14] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission and Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
    [15] L. Wang, S.-S. Chen, W.-J. Lee, and Z. Chen, “Dynamic stability enhancement and power flow control of a hybrid wind and marine-current farm using SMES,” IEEE Trans. Energy Conversion, vol. 24, no. 3, pp. 626-639, Sep. 2009.
    [16] A. Heniche and I. Kamwa, “Using global control and SMES to damp inter-area oscillations: An exploratory assessment,” in Proc. IEEE Power Engineering Society Summer Meeting, Seattle, WA, USA, Jul. 16-20, 2000, pp. 1872-1876.
    [17] I. Ngamroo and S. Vachirasricirikul, “Coordinated control of optimized SFCL and SMES for improvement of power system transient stability,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5600805, Jun. 2012.
    [18] I. Ngamroo and T. Karaipoom, “Cooperative control of SFCL and SMES for enhancing fault ride through capability and smoothing power fluctuation of DFIG wind farm,” IEEE Trans. Applied Superconductivity, vol. 24, no. 5, p. 5400304, Oct. 2014.
    [19] G. T. Son, H. J. Lee, S. Y. Lee, and J. W. Park, “A study on the direct stability analysis of multi-machine power system with resistive SFCL,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5602304, Jun. 2012.
    [20] M. Aly and E. A. Mohamed, “Enhancement of power system transient stability using inductive superconducting fault current limiter with YBCO and Bi-2212,” International Journal on Power Engineering and Energy (IJPEE), vol. 4, no. 4, pp. 400-405, Oct. 2013.
    [21] G. Didier, J. Lévêque, and A. Rezzoug, “A novel approach to determine the optimal location of SFCL in electric power grid to improve power system stability,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 978-984, May 2013.
    [22] B. C. Sung, D. K. Park, J. W. Park, and T. K. Ko, “Study on optimal location of a resistive SFCL applied to an electric power grid,” IEEE Trans. Applied Superconductivity, vol. 19, no. 3, pp. 2048-2052, Jul. 2009.
    [23] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
    [24] A. O. Ibrahim, T. H. Nguyen, D. C. Lee, and S. C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
    [25] G. H. Kim, N. Kim, K. M. Kim, M. Park, I. K. Yu, S. Lee, and T. J. Park, “EMTDC based simulation of 10 MW class grid-connected superconducting wind turbine generator,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5202105, Jun. 2012.
    [26] F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, “Control of DFIG-based wind generation for power network support,” IEEE Trans. Power Systems, vol. 20, no. 4, pp. 1958-1966, Nov. 2005.
    [27] H. S. Ko, G. G. Yoon, and W. P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, Nov. 2007.
    [28] M. Saekjia and I. Ngamroo, “Alleviation of power fluctuation in interconnected power systems with wind farm by SMES with optimal coil size,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5701504, Jun. 2012.
    [29] A. M. Shiddiq, A. S. Masoum, and A. Siada, “Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell,” IEEE Trans. Applied Superconductivity, vol. 22, no. 4, p. 5702009, Aug. 2012.
    [30] Z. Hong, J. Sheng, L. Yao, J. Gu, and Z. Jin, “The structure, performance and recovery time of a 10 kV resistive type superconducting fault current limiter,” IEEE Trans. Applied Superconductivity, vol. 23, no. 3, p. 5601304, Jun. 2013.
    [31] B. C. Sung, D. K. Park, K. M. Kim, J. W. Park, and T. K. Ko, “Study on a series resistive SFCL to improve power system transient stability: Modeling, simulation, and experimental verification,” IEEE Trans. Industrial Electronics, vol. 56, no. 7, pp. 2412-2419, Jul. 2009.
    [32] U. A. Khan, J. K. Seong, S. H. Lee, S. H. Lim, and B. W. Lee, “Feasibility analysis of the positioning of superconducting fault current limiters for the smart grid application using Simulink and SimPowerSystem,” IEEE Trans. Applied Superconductivity, vol. 21, no. 3, pp. 2165-2169, Jul. 2011.
    [33] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, Dec. 1983.
    [34] L. Kovalsky, X. Yuan, K. Tekletsadik, A. Keri, J. Bock, and F. Breuer, “Applications of superconducting fault current limiters in electric power transmission systems,” IEEE Trans. Applied Superconductivity, vol. 15, no. 2, pp. 2130-2133, Jun. 2005.
    [35] M. Noe and M. Steurer, “High-temperature superconductor fault current limiters: Concepts, applications, and development status,” Superconductor Science and Technology, vol. 20, no. 3, pp. 15-27, Mar. 2007.
    [36] R. Sadikovic, P. Korba, and G. Andersson, “Application of FACTS devices for damping of power system oscillations,” in Proc. IEEE Russia Power Tech, Petersburg, Russia, Jun. 27-30, 2005, pp. 1-6.
    [37] M. E. Aboul-Ela, A. A. Sallam, J. D. Mccalley, and A. A. Fouad, “Damping controller design for power system oscillations using global signals,” IEEE Trans. Power Systems, vol. 11, no. 2, pp. 767-773, May 1996.
    [38] W. Yao, L. Jiang, J.-Y. Wen, Q.-H. Wu, and S.-J. Cheng, “Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays,” IEEE Trans. Power Systems, vol. 29, no. 1, pp. 318-329, Jan. 2014.
    [39] J. L. Dominguez-Garcia, F. D. Bianchi, and O. Gomis-Bellmunt, “Control signal selection for damping oscillations with wind power plants based on fundamental limitations,” IEEE Trans. Power Systems, vol. 28, no. 4, pp. 4274-4281, Nov. 2013.
    [40] A. Heniche and I. Kamwa, “Control loops selection to damp inter-area oscillations of electrical networks,” IEEE Trans. Power Systems, vol. 17, no. 2, pp. 378-384, May 2002.
    [41] A. Heniche and I. Kamwa, “Assessment of two methods to select wide-area signals for power system damping control,” IEEE Trans. Power Systems, vol. 23, no. 2, pp. 572-581, May 2008.
    [42] A. M. A. Hamdan, “Geometric measures of modal controllability and observability of power system models,” Electric Power Systems Research, vol. 15, no. 2, pp. 147-155, Oct. 1988.
    [43]
    M. Yusuke, S. Hideyuki, and G. Wu, “Investigating the transient properties of a superconducting generator with high-response excitation introducing current source PWM converter in an improved power system,” Journal of International Council on Electrical Engineering, vol. 3, no. 1, pp. 85-91, Sep. 2013.
    [44] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [45] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [46] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd ed., New York: John Wiley & Sons, 2002.
    [47] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程學系碩士論文,民國一百年七月。
    [48] 葉芳銘,超導與傳統發電機在多機電力系統之穩定度分析,國立成功大學電機工程學系碩士論文,民國八十一年六月。
    [49] 張庭仁,應用彈性交流輸電系統於增強離岸式風場連接至電力系統之穩定度,國立成功大學電機工程學系博士論文,民國一百零二年五月。
    [50] 陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,民國九十八年三月。
    [51] 李浩文,利用超導儲能系統以及整合型功率潮流控制器於整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,民國一百年七月。
    [52] 連思揚,利用超導儲能系統及超導故障限流器於多機系統連接混合式離岸式風場之穩定度分析,國立成功大學電機工程學系碩士論文,民國一百零四年七月。

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE