簡易檢索 / 詳目顯示

研究生: 姚嘉豪
Yao, Chiahao
論文名稱: 利用粒子群選擇權評價美式選擇權
Pricing American Options by Using Particle Swarm Optimization
指導教授: 劉裕宏
Liu, Yu-Hong
王澤世
Wang, Ze-Shih
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 31
中文關鍵詞: 仿生法粒子群演算法美式選擇權
外文關鍵詞: Bio-inspired algorithm, PSO algorithm, American options
相關次數: 點閱:139下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著金融商品日新月異,許多新興衍生性商品都是自己沒有接觸或研究過的,此時,衍生性商品的定價就成為很重要的議題,早期大部分的學者及投資人都使用Black-Scholes Model(BSM)及二項樹等傳統型評價模型來定價,而其中很多假設可能不太符合真實情況,不過也提供一個評價標準給我們。近年來,越來越多學者透過仿生法或生物演算法等新穎的演算法套用在衍生性商品評價,嘗試得到更精確的商品價值。此篇論文欲透過粒子群演算來評價選擇權,而粒子群演算法是人類觀察鳥類覓食的行為而發展出來的演算法,並多用於解決最佳化的問題。粒子群演算法的優點是能夠同時計算兩個變數(此篇為股價及時間),運用在美式選擇權的評價則更加有效率,也可用來計算歐式選擇權,也能改善傳統模型的一些缺點。

    In this ever-changing world, there are a lot of new derivatives which we never learn or know. Therefore, the pricing of derivatives has became an important issue. Most early scholars and investors used traditional evaluation models such as Black-Scholes model (BSM) and the Binomial Trees to price derivatives, many assumptions or applications of which may not be true, but also provide a standard for us. In recent years, more and more scholars have tried to obtain more accurate commodity values through novel algorithms such as bio-inspired or biological algorithms. This paper would like to evaluate the option by particle swarm optimization, and the particle swarm optimization is an algorithm developed by the behavior of birds foraging and is used to solve optimization problems. The advantage of particle swarm optimization is that it can calculate two variables at the same time (stock price and time.) and make the evaluation of American option more efficient, PSO can also be used to calculate European options and can also improve some of the shortcomings of the traditional model.

    Contents 摘要 Abstract Chapter 1: Introduction 1 Chapter 2: Models and Techniques for Option Pricing 5 (I) Black-Scholes-Merton Option Pricing Model 5 (II) Binomial Lattice Option Pricing Model 6 (III) Genetic Algorithm for Option Pricing Model 8 (IV) Ant Colony Optimization Pricing Model 10 (V) PSO Model 11 Chapter 3: Particle Swarm Optimization 12 3.1 PSO Algorithm 13 3.2 Option pricing with Particle Swarm Optimization 17 3.3 Mapping PSO 19 Chapter 4: Experimental Results and Discussion 24 Chapter 5: Conclusion and Future Work 29 Reference 30

    Black, F., Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), pp. 637-654.
    Boyle, P, P. (1977). Options: A Monte Carlo Approach. Journal of Financial Economics, 4(3), pp. 323-338.
    Chalasani, P., Jha, S., Egriboyun, F., & Varikooty, A. (1999). A Refined Binomial Lattice for Pricing American Asian Options. Review of Derivatives Research 3(1), pp.85-105.
    Darwish, A. (2018). Bio-inspired Computing: Algorithms Review, Deep Analysis, and The Scope of Applications. Future Computing and Informatics Journal ,3(2), pp.231-246.
    Fischer, B., & Myron, S. (1971). The Valuation of Option Contracts and a Test of Market Efficiency. The Journal of Finance, 27(2), pp. 399-417.
    Girish, J., Prasain, H., Thulasiraman, P., & Thulasiram R. K. (2010) A Parallel Particle Swarm Optimization Algorithm for Option Pricing. IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 1-7.
    John, C. Cox., Ross, S. A., & Mark, R. (1979). Option Pricing: A Simplified Approach. Journal of Financial Economics 7, pp. 229-263.
    Kennedy, J., & Eberhart, RC. (1995) Particle Swarm Optimization. Proceedings of ICNN’95 – International Conference on Neural Networks. 4. pp. 1942-1948
    Kennedy, J., & Clerc, M. (2002) The Particle Swarm: Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transaction on Evolutionary Computation, 6(1), pp58-73
    John, C. Hull. (2012). Fundamentals of Futures and Options Markets 8th Edition. Pearson Education.
    Lindwall, G. (2018). Quadratic Volatility Models Applied to the Pricing of European Options. Master’s Thesis in Engineering Mathematics and Computational Science.
    Mahamed, N. A. (2016). Particle Swarm Optimization: Algorithm and its Codes in Matlab.
    Prah, J. A., Amponsah, S. K., Andam, P. S. & Gyamerah, S.A. (2014). A Genetic Algorithm for Option Pricing: The American Put Option. Applied Mathematical Sciences, 8(65), pp. 3197-3214.
    Prasain, H., Thulasiraman, P., Thulasiram, R, K., & Jha, G, K. (2010). Particle Swarm Optimization Algorithm for Option Pricing: Extend abstract. GECCO, pp. 2109-2110
    Shi, Y., & Eberhart, RC. (1998). A Modified Particle Swarm Optimizer. IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). pp. 69-73.
    Wu, Z. S. (2014). A Dynamic PSO – Black-Scholes Option Pricing Model. Master’s Thesis. National Pingtung University. Graduate Program of Information Management.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE