| 研究生: |
王儷穎 Wang, Li-Ying |
|---|---|
| 論文名稱: |
以推-拉-繫住力理論探討消費者採用自助結帳之轉換意圖 Exploring Consumers’ Intention to Switch to Self-Checkout Systems: A Push-Pull-Mooring (PPM) Model Perspective |
| 指導教授: |
葉時碩
Yeh, Shih-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 自助服務科技 、自助結帳系統 、推-拉-繫住力模型 、轉換意圖 |
| 外文關鍵詞: | Self-Service Technology, Self-Checkout Systems, Push-Pull-Mooring Model, Switching Intention |
| 相關次數: | 點閱:3 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步與疫情推波助瀾,自助服務科技 (Self-Service Technology, SST) 在零售場域的應用日益普及,亦改變了業者與顧客之間的互動模式。本研究以推-拉-繫住力模型 (Push-Pull-Mooring, PPM) 作為理論基礎,探討消費者由傳統人工結帳轉換至自助結帳系統的關鍵因素。推力因素係指消費者在人工結帳過程中產生的不利感受,如感知等待時間與社交焦慮;拉力因素代表吸引消費者使用自助結帳的正向動機,包括感知有用性、追求新奇與享樂感;而繫住力因素則代表阻礙消費者從傳統人工結帳轉換至自助結帳系統的心理障礙或行為慣性,如習慣與科技焦慮。
本研究透過網路問卷蒐集數據,共回收574份有效樣本,並使用偏最小平方法的結構方程模型 (Partial least squares structural equation modeling, PLS-SEM) 進行統計分析。研究結果顯示:推力因素(感知等待時間、社交焦慮)對轉換意圖具有正向且顯著的影響;拉力因素(感知有用性、追求新奇、享樂感)對轉換意圖具有正向且顯著的影響;繫住力因素(習慣、科技焦慮)對轉換意圖呈現負向顯著影響。然而,繫住力因素在推力、拉力對轉換意圖之間的調節效果並未達顯著。本研究提供一個整合環境、情感與行為的分析架構,以補足消費者轉換決策中多面向動機之理解;亦可作為零售業者導入或優化自助結帳服務之實務參考,協助提升顧客體驗與轉換意願。
With the advancement of technology and the influence of the COVID-19 pandemic, self-service technologies (SSTs) have become increasingly common in retail, changing how businesses interact with consumers. This study adopts the Push-Pull-Mooring (PPM) model to examine key factors influencing consumers’ intention to switch from traditional checkout to self-checkout systems (SCOs). Push factors (perceived waiting time, social anxiety) reflect dissatisfaction with traditional checkout; pull factors (perceived usefulness, novelty seeking, enjoyment) represent positive motivations toward SCOs; mooring factors (habit, technology anxiety) indicate resistance to switching. Based on 574 valid responses collected via an online survey, partial least squares structural equation modeling (PLS-SEM) was used for analysis. Results show that push and pull factors positively influence switching intention, while mooring factors have a significant negative effect. However, the moderating role of mooring factors was not supported. This study provides a multi-dimensional framework to better understand switching motivations and offers practical implications for optimizing SCO adoption in retail.
Aarts, H., Verplanken, B., & Van Knippenberg, A. (1998). Predicting behavior from actions in the past: Repeated decision making or a matter of habit? Journal of applied social psychology, 28(15), 1355-1374.
Ayodeji, Y., Rjoub, H., & Özgit, H. (2023). Achieving sustainable customer loyalty in airports: The role of waiting time satisfaction and self-service technologies. Technology in Society, 72. https://doi.org/10.1016/j.techsoc.2022.102106
Bansal, H. S., Taylor, S. F., & St. James, Y. (2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science, 33(1), 96–115.
Barua, Z., Aimin, W., & Hongyi, X. (2017). A perceived reliability-based customer satisfaction model in self-service technology. The Service Industries Journal, 38(7-8), 446-466. https://doi.org/10.1080/02642069.2017.1400533
Bateson, J. E. (1985). Self-service consumer: An exploratory study. Journal of retailing.
Becker, J.-M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models. Long range planning, 45(5-6), 359-394.
Cambre, M. A., & Cook, D. L. (1985). Computer anxiety: Definition, measurement, and correlates. Journal of Educational Computing Research, 1(1), 37-54.
Chang, H. H., Fu, C. S., Fang, P. W., & Cheng, Y.-C. (2016). The effects of relationship maintenance and relationship investment on self-service technology relationship performance. Information Technology & People, 29(3), 496-526. https://doi.org/10.1108/itp-08-2014-0171
Chang, H. H., Wong, K. H., & Li, S. Y. (2017). Applying push-pull-mooring to investigate channel switching behaviors: M-shopping self-efficacy and switching costs as moderators. Electronic Commerce Research and Applications, 24, 50-67. https://doi.org/10.1016/j.elerap.2017.06.002
Chen, Y., Li, X., Li, Q., & Li, W. (2022). Exploring customers' switching from native to lightweight apps: a push–pull–mooring framework perspective. Industrial Management & Data Systems, 122(12), 2633-2656. https://doi.org/10.1108/imds-04-2022-0234
Cheng, S., Lee, S.-J., & Choi, B. (2019). An empirical investigation of users’ voluntary switching intention for mobile personal cloud storage services based on the push-pull-mooring framework. Computers in Human Behavior, 92, 198-215.
Chuah, S., Yee, N., Wen, T., Tao, L., Hanqi, Y., & Jie, T. (2023). Out of Satisfaction or Out of Self-Protection? Examining Customers’ Willingness to Pay for Self-Service Technologies at Restaurants in the COVID-19 Era. Asia-Pacific Journal of Innovation in Hospitality and Tourism (APJIHT), 12, 49–75.
Chuang, S.-S., & Lai, H.-M. (2019). Understanding consumers’ continuance intention toward self-service stores: an integrated model of the theory of planned behavior and push-pull-mooring theory. International Conference on Knowledge Management in Organizations,
Clark, L. A., & Watson, D. (2016). Constructing validity: Basic issues in objective scale development.
Curran, J. M., & Meuter, M. L. (2005). Self‐service technology adoption: comparing three technologies. Journal of services marketing, 19(2), 103-113.
Dabholkar, P. A. (1996). Consumer evaluations of new technology-based self-service options: an investigation of alternative models of service quality. International journal of research in marketing, 13(1), 29-51.
Dabholkar, P. A., & Bagozzi, R. P. (2002). An attitudinal model of technology-based self-service: moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science, 30, 184-201.
Datos Insights. (2024). Refreshes and Rollouts Lead to a Record Year for Self-Checkout. https://datos-insights.com/press-release/refreshes-and-rollouts-lead-to-a-record-year-for-self-checkout/
Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205(219), 5.
Davis, M. M., & Heineke, J. (1998). How disconfirmation, perception and actual waiting times impact customer satisfaction. International Journal of Service Industry Management, 9(1), 64-73. https://doi.org/10.1108/09564239810199950
Delacroix, E., & Guillard, V. (2016). Consumers who avoid relationships: social anxiety in commercial contexts. Journal of Consumer Behaviour, 15(4), 370-384.
Demirci Orel, F., & Kara, A. (2014). Supermarket self-checkout service quality, customer satisfaction, and loyalty: Empirical evidence from an emerging market. Journal of Retailing and Consumer Services, 21(2), 118-129. https://doi.org/10.1016/j.jretconser.2013.07.002
Demoulin, N. T. M., & Djelassi, S. (2016). An integrated model of self-service technology (SST) usage in a retail context. International Journal of Retail & Distribution Management, 44(5), 540-559. https://doi.org/10.1108/ijrdm-08-2015-0122
Duarte, P., Silva, S. C., Linardi, M. A., & Novais, B. (2022). Understanding the implementation of retail self-service check-out technologies using necessary condition analysis. International Journal of Retail & Distribution Management, 50(13), 140-163. https://doi.org/10.1108/ijrdm-05-2022-0164
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. In: Sage publications Sage CA: Los Angeles, CA.
Gelbrich, K., & Sattler, B. (2014). Anxiety, crowding, and time pressure in public self-service technology acceptance. Journal of services marketing, 28(1), 82-94.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40, 414-433.
Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. In Multivariate data analysis (pp. 785-785).
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer Nature.
Hair Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20.
Hightower Jr, R., Brady, M. K., & Baker, T. L. (2002). Investigating the role of the physical environment in hedonic service consumption: an exploratory study of sporting events. Journal of Business Research, 55(9), 697-707.
Hsieh, J.-K., Hsieh, Y.-C., Chiu, H.-C., & Feng, Y.-C. (2012). Post-adoption switching behavior for online service substitutes: A perspective of the push–pull–mooring framework. Computers in Human Behavior, 28(5), 1912-1920. https://doi.org/10.1016/j.chb.2012.05.010
Jing, P., Zha, Y., Pan, K., & Xue, Y. (2023). Investigating Multidimensional Factors Influencing Switching Intention on School Bus among Chinese Parents—A Push–Pull–Mooring Framework. Sustainability, 15(10). https://doi.org/10.3390/su15107770
Jung, J., Han, H., & Oh, M. (2017). Travelers' switching behavior in the airline industry from the perspective of the push-pull-mooring framework. Tourism Management, 59, 139-153. https://doi.org/10.1016/j.tourman.2016.07.018
Katz, K. L., Larson, B. M., & Larson, R. C. (1991). Prescription for the waiting-in-line blues: Entertain, enlighten, and engage. Sloan Management Review, 42, 44–53.
Kaur, H., & Kaur, P. (2024). Airline self-service technology adoption: Moderating impact of gender and experience. Global Business & Finance Review (GBFR), 29(5), 1-13.
Kokkinou, A., & Cranage, D. A. (2015). Why wait? Impact of waiting lines on self-service technology use. International Journal of Contemporary Hospitality Management, 27(6), 1181-1197. https://doi.org/10.1108/IJCHM-12-2013-0578
Lee, E. S. (1966). A theory of migration. Demography, 3(1), 47-57.
Lee, H.-J., & Yang, K. (2013). Interpersonal service quality, self-service technology (SST) service quality, and retail patronage. Journal of Retailing and Consumer Services, 20(1), 51-57.
Lenz, J., Bozakov, Z., Wendzel, S., & Vrhovec, S. (2023). Why people replace their aging smart devices: A push–pull–mooring perspective. Computers & Security, 130. https://doi.org/10.1016/j.cose.2023.103258
Leung, L. S. K. (2024). The Influence of Self-Service Technology on Customer Word-of-Mouth in Retail. International Journal of Scientific Research and Management (IJSRM), 12(04), 6024-6138. https://doi.org/10.18535/ijsrm/v12i04.em07
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 705-737.
Longino, C. F. (1992). The forest and the trees: micro-level considerations in the study of geographic mobility in old age. In elderly migration and population redistribution, 23-24.
Maister, D. H. (1985). The psychology of waiting lines in The service encounter: managing employee/customer interaction in service businesses, JA Czepiel, MR Solomon, CF Suprenant.(eds.), DC Heath and Company. In: Lexington Books, Lexington, Massachusetts.
McLean, G., & Wilson, A. (2019). Shopping in the digital world: Examining customer engagement through augmented reality mobile applications. Computers in Human Behavior, 101, 210-224.
Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal of Business Research, 56(11), 899-906.
Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-Service Technologies: Understanding Customer Satisfaction with Technology-Based Service Encounters. Journal of Marketing, 64(3), 50-64. https://doi.org/10.1509/jmkg.64.3.50.18024
Mohd‐Any, A. A., Sarker, M., & Hui, F. L. Z. (2023). Understanding users' switching intention of cloud storage services: A push‐pull‐mooring framework. Journal of Consumer Behaviour, 23(2), 748-768. https://doi.org/10.1002/cb.2239
Monoarfa, T. A., Sumarwan, U., Suroso, A. I., & Wulandari, R. (2023). Switch or Stay? Applying a Push–Pull–Mooring Framework to Evaluate Behavior in E-Grocery Shopping. Sustainability, 15(7). https://doi.org/10.3390/su15076018
Moon, B. (1995). Paradigms in migration research: exploring ’moorings’ as a schema. Progress in Human Geography, 19(4), 504-524.
Munichor, N., & Rafaeli, A. (2007). Numbers or apologies? Customer reactions to telephone waiting time fillers. Journal of Applied Psychology, 92(2), 511.
Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook, 97-146.
Nusrat, F., & Huang, Y. (2024). Feeling rewarded and entitled to be served: Understanding the influence of self- versus regular checkout on customer loyalty. Journal of Business Research, 170. https://doi.org/10.1016/j.jbusres.2023.114293
Oghazi, P., Mostaghel, R., Hultman, M., & Parida, V. (2012). Antecedents of technology-based self-service acceptance: a proposed model. Services Marketing Quarterly, 33(3), 195-210.
Oh, H., Jeong, M.,, Lee, S., & Warnick, R. (2013). Attitudinal and situational determinants of self-service technology use. Journal of Hospitality & Tourism Research, 32(3), 363-386.
Park, J.-S., Ha, S., & Jeong, S. W. (2020). Consumer acceptance of self-service technologies in fashion retail stores. Journal of Fashion Marketing and Management: An International Journal, 25(2), 371-388. https://doi.org/10.1108/jfmm-09-2019-0221
Pierce, T. (2009). Social anxiety and technology: Face-to-face communication versus technological communication among teens. Computers in Human Behavior, 25(6), 1367-1372.
Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of management, 12(4), 531-544.
Pruyn, A., & Smidts, A. (1998). Effects of waiting on the satisfaction with the service: Beyond objective time measures. International journal of research in marketing, 15(4), 321-334.
Ramadhani, D. P., Masnita, Y., & Nilasari, B. M. (2023). Is Self-Service Technology Appealing for Fast-Food Consumers? Contemporary Exploration of Social Sciences Inquiries with New Approaches in the Post-Pandemic Era, 52.
Ran, G., Li, J., Zhang, Q., & Niu, X. (2022). The association between social anxiety and mobile phone addiction: A three-level meta-analysis. Computers in Human Behavior, 130, 107198. https://doi.org/https://doi.org/10.1016/j.chb.2022.107198
Ravenstein, E. G. (1885). The Laws of Migration. Journal of the Statistical Society of London, 48(2), 167-235.
Rinta-Kahila, T., Penttinen, E., Kumar, A., & Janakiraman, R. (2021). Customer reactions to self-checkout discontinuance. Journal of Retailing and Consumer Services, 61. https://doi.org/10.1016/j.jretconser.2021.102498
Rogers, E. M. (1983). Diffusion of Innovations. Free Press.
Schlenker, B. R., & Leary, M. R. (1982). Social anxiety and self-presentation: A conceptualization model. Psychological bulletin, 92(3), 641.
Sharma, P., Ueno, A., & Kingshott, R. (2021). Self-service technology in supermarkets – Do frontline staff still matter? Journal of Retailing and Consumer Services, 59. https://doi.org/10.1016/j.jretconser.2020.102356
Shin, D. H. (2009). Determinants of customer acceptance of multi-service network: An implication for IP-based technologies. Information & Management, 46(1), 16-22.
Singh, R., & Rosengren, S. (2020). Why do online grocery shoppers switch? An empirical investigation of drivers of switching in online grocery. Journal of Retailing and Consumer Services, 53, 101962.
Su, S. S., Sheu, S.-H., & Wang, K.-H. (2023). Does Self-Checkout Service Really Improve Customer Service in Systems Subject to Congestion?–An Empirical Investigation in the Retail Industry. Queueing Models and Service Management, 6(2), 59-76.
Sun, Y., Liu, D., Chen, S., Wu, X., Shen, X.-L., & Zhang, X. (2017). Understanding users' switching behavior of mobile instant messaging applications: An empirical study from the perspective of push-pull-mooring framework. Computers in Human Behavior, 75, 727-738. https://doi.org/10.1016/j.chb.2017.06.014
Taylor, S. (1995). The effects of filled waiting time and service provider control over the delay on evaluations of service. Journal of the Academy of Marketing Science, 23, 38 – 48.
The Business Research Company. (2025). Self-Checkout Systems Global Market Report 2025. GII. https://www.gii.tw/report/tbrc1668572-self-checkout-systems-global-market-report.html
Tom, G., & Lucey, S. (1997). A field study investigating the effect of waiting time on customer satisfaction. Journal of Psychology, 131, 655-660.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating perceived behavioral control, computer anxiety and enjoyment into the technology acceptance model. Information systems research, 11(4), 342-365.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315.
Verplanken, B., & Aarts, H. (1999). Habit, attitude, and planned behaviour: is habit an empty construct or an interesting case of goal-directed automaticity? European review of social psychology, 10(1), 101-134.
Wang, C. (2017). Consumer acceptance of self-service technologies: An ability–willingness model. International Journal of Market Research, 59(6), 787-802.
Wang, C., Harris, J., & Patterson, P. G. (2012). Customer choice of self‐service technology: the roles of situational influences and past experience. Journal of service management, 23(1), 54-78.
Weijters, B., Rangarajan, D., Falk, T., & Schillewaert, N. (2007). Determinants and outcomes of customers' use of self-service technology in a retail setting. Journal of Service Research, 10(1), 3-21.
Wells, A., Clark, D. M., Salkovskis, P., Ludgate, J., Hackmann, A., & Gelder, M. (1995). Social phobia: The role of in-situation safety behaviors in maintaining anxiety and negative beliefs. Behavior Therapy, 26(1), 153-161.
Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS quarterly, 177-195.
Xiong, W., Huang, M., Okumus, B., Leung, X. Y., & Cai, X. (2022). When social phobia meets excessive service: Effects on customer delight and loyalty. Tourism Management Perspectives, 44. https://doi.org/10.1016/j.tmp.2022.101031
Ye, C., & Potter, R. (2011). The role of habit in post-adoption switching of personal information technologies: An empirical investigation. Communications of the Association for Information Systems, 28(1), 35.
Ye, D., Liu, F., Cho, D., & Jia, Z. (2022). Investigating switching intention of e-commerce live streaming users. Heliyon, 8(10). https://doi.org/10.1016/j.heliyon.2022.e11145
Yoon, C., & Lim, D. (2021). Customers’ Intentions to Switch to Internet-Only Banks: Perspective of the Push-Pull-Mooring Model. Sustainability, 13(14). https://doi.org/10.3390/su13148062
Yuan, C., Zhang, C., & Wang, S. (2022). Social anxiety as a moderator in consumer willingness to accept AI assistants based on utilitarian and hedonic values. Journal of Retailing and Consumer Services, 65. https://doi.org/10.1016/j.jretconser.2021.102878
Zalinska, A., & Agopian, G. (2023). Social anxiety and the consumer: Examining the relationship between social media users’ level of social anxiety and attitudes toward customer service channels. Journal of Marketing Communications, 29(7), 715-746.
Zhang, Y., Oh, H.-K., & Lee, C. H. (2021). Understanding consumer switching intention of peer-to-peer accommodation: A push-pull-mooring framework. Journal of Hospitality and Tourism Management, 49, 321-330. https://doi.org/10.1016/j.jhtm.2021.10.003
未來流通研究所. (2022). 自助結帳機、無人貨架都有!零售龍頭們導入科技百花齊放,一張圖盤點戰力. 數位時代. 取自:https://www.bnext.com.tw/article/68894/store-tec-industry-map-apri
李家瑩, & 黃鈺雯. (2024). 以推-拉-繫住力模型探討消費者由實體商店轉換至網路購物之意圖 [Applying PPM Framework to Explore Consumer's Switching Intention from Offline to Online Shopping]. 中山管理評論, 32(3), 339-372. https://doi.org/10.6160/sysmr.202409_32(3).0001
鹿特丹台灣貿易中心. (2022). 疫情發展新趨勢 自助結帳夯. 台灣經貿網. 取自:https://info.taiwantrade.com/biznews/%E7%96%AB%E6%83%85%E7%99%BC%E5%B1%95%E6%96%B0%E8%B6%A8%E5%8B%A2-%E8%87%AA%E5%8A%A9%E7%B5%90%E5%B8%B3%E5%A4%AF-2519020.html
國家發展委員會. (2022). 中華民國人口推估(2022年至2070年). 取自:https://ppws.ndc.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDY0L3JlbGZpbGUvMTAzNDcvNTAvMTMxNmIxMGYtMzUzYS00NDk3LTk2N2YtN2M2MjA5ZjIwNzZmLnBkZg%3D%3D&n=5Lit6I%2Bv5rCR5ZyL5Lq65Y%2Bj5o6o5LywKDIwMjLlubToh7MyMDcw5bm0KeWgseWRii5wZGY%3D&icon=.pdf
張彧, & 陳春富. (2024). 以科技接受模式探討消費者對於自助結帳系統的使用意願 [Using Technology Acceptance Model to Explore Consumers' Intention to Use Self-Checkout]. 量化分析與研究(4), 59-77. https://doi.org/10.29782/qara.202401_(4).0004
劉燿瑜. (2021). 全聯「聰明結帳」再進化!智慧結帳、電子標籤、雲端POS一次導入,數位轉型不是開新店這麼簡單. 經理人月刊. 取自:https://www.managertoday.com.tw/articles/view/63457