簡易檢索 / 詳目顯示

研究生: 葉正皓
Yeh, Cheng-Hao
論文名稱: 居家服務型機器人抓取姿態與模糊握力控制法之設計與實現
Design and Implementation of Grasping Posture and Fuzzy Grip Force Control Scheme for Home Service Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 79
中文關鍵詞: 模糊控制逆向運動學居家服務型機器人
外文關鍵詞: Fuzzy Control, Inverse Kinematics, Home Service Robot
相關次數: 點閱:145下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討居家服務型機器人抓取姿態與模糊握力控制法之設計與實現。首先探討居家服務型機器人的硬體架構,本機器人係由筆記型電腦為控制中樞,結合一對具6個自由度的機械手臂、4個自由度的手掌、2個自由度的頸部、四輪轉動和四輪驅動的輪型底盤、視覺系統及雷射量測系統。以視覺系統取得目標物的位置與外型,並將它從影像座標系轉換到機器人座標系。另一方面,利用D-H法則(Denavit-Hartenberg convention)來定義機械手臂的座標,藉此推導出手臂的順向與逆向運動學。此外,設計手臂抓取物品時的移動軌跡與姿態,並根據終端器的誤差去校正手臂位置。在手臂的終端器完成定位後,利用伺服馬達負載效應去實現模糊握力控制。最後,本論文提出的抓取姿態與握力控制法,將其應用於居家服務型機器人,並透過實驗室的實驗結果與2012 RoboCup@Home日本公開賽的比賽成果證明其可行性與有效性。

    This thesis mainly discusses the design and implementation of grasping posture and fuzzy grip force control scheme for home service robot. First, the hardware architecture of the home service robot consists of a pair of 6-DOF (degree of freedom) arms, 4-DOF hand, 2-DOF neck, four-wheel steering and four-wheel drive mobile chassis, vision system, and laser measurement system. The position and shape of the target are obtained by vision system, and they are transformed to robot coordinate system from vision coordinate system. On the other hand, the coordinate of the robotic arm is defined by Denavit-Hartenberg convention, and forward and inverse kinematics of the robotic arm are derived. Moreover, the moving trajectory of the robotic arm and the posture for grasping object are designed, and the position of the end-effector is adjusted according to its error. After the end-effector of the robotic arm reaches the target, a fuzzy grip force control is implemented by considering the load effect of the motors. Finally, both the experimental results in the laboratory and competition consequents of 2012 Robocup@home Japan Open demonstrate the validity and effectiveness of the proposed grasping posture and fuzzy grip force control scheme on our home service robot.

    Abstract Ⅰ Acknowledgement Ⅲ Contents Ⅳ List of Figures Ⅵ List of Tables IX Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2. Design of the Home Service Robot 6 2.1 Introduction 6 2.2 System Architecture of the Home Service Robot 8 2.3 Hardware Architecture of the Home Service Robot 10 2.3.1 Central Operation Unit 11 2.3.2 Vision System 12 2.3.3 Servo Motor Module 14 2.3.4 Power System and Signal Circuit Board 16 2.3.5 Hardware Configuration of the Home Service Robot 17 2.4 Summary 20 Chapter 3. Coordinate Transformation and Kinematics Analysis for Robotic Arm 21 3.1 Introduction 21 3.2 Coordinate Transformation 23 3.2.1 Coordinate Transformation from Image to Robot 23 3.2.2 Coordinate Transformation from Robot to Arm 26 3.3 Forward Kinematic Module of 6-DOF Robotic Arm 27 3.4 Inverse Kinematic Module of 6-DOF Robotic Arm 34 3.4.1 Inverse Kinematics Analysis 34 3.4.2 The Definition of the Position and the Orientation 41 3.5 Summary 43 Chapter 4. Control Applications for Robotic Arm 44 4.1 Introduction 44 4.2 Trajectory Control for Robotic Arm 46 4.2.1 Design of Moving Trajectory for Robotic Arm 47 4.2.2 Adjustment for the End-Effector of Robotic Arm 50 4.3 Fuzzy Grip Force Control 55 4.4 Control strategy for grasping object 59 4.5 Summary 61 Chapter 5. Experimental Results 63 5.1 Introduction 63 5.2 Experimental Results of the Home Service Robot 64 5.2.1 Grasp Object with Robotic Arm 64 5.2.2 Application of the Home Service Robot 71 5.2.3 Competition results of 2012 Robocup@home Japan Open 73 5.3 Summary 74 Chapter 6. Conclusion and Future Work 75 6.1 Conclusion 75 6.2 Future Work 76 References 77 Biography 79

    [1] J. H. Jean, M. J. Hsieh, and Z. W. Lin, “Development of a housekeeping robot with visual servoing capabilities,” in Proceedings ICCAS-SICE, 2009, pp. 712-716.
    [2] T. Taipalus and K. Kosuge, “Development of service robot for fetching objects in home environment,” in Proceedings 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, June 27-30, 2005, pp. 451-456.
    [3] R.P. Paul, Robot Manipulators: Mathematics, Programming and Control. Cambridge, MA: MIT Press, 1982.
    [4] G. S. Huang, C. K. Tung, H. C. Lin, and S. H. Hsiao, “Inverse kinematics analysis trajectory planning for a robot arm,” in Proceedings of 2011 8th Asian Control Conference (ASCC), 2011, pp. 965-970.
    [5] Y. Cui, P. Shi, and J. Hua, “Kinematics analysis and simulation of a 6-DOF humanoid robot manipulator,” in Proceedings 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics, 2010, pp. 246-249.
    [6] 2012 Robocup@home Japan Open. Available: http://www.robocup.or.jp/
    [7] SolidWorks. Available: http://www.solidworks.com/
    [8] Kinect for Windows. Available: http://www.microsoft.com/en-us/kinectforwindows/
    [9] ROBOTIS. Available: http://www.robotis.com/xe/intro
    [10] Wikipedia for Euler angles. Available: http://en.wikipedia.org/wiki/Euler_angles
    [11] Wikipedia for Denavit–Hartenberg convention. Available: http://en.wikipedia.org/wiki/Denavit–Hartenberg_parameters
    [12] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, New York: Wiley, 1989.
    [13] S. Bruno and K. Oussama, Springer Handbook of Robotics. New York: Springer-Verlag, 2008.
    [14] J. Xie, S. Yan, and W. Qiang, “A method for solving the inverse kinematics problem of 6-DOF space manipulator,” in Proceeding of International Symposium on Systems and Control in Aerospace and Astronautics, January 2006 , pp.379-382.
    [15] D. H. Song and S. Jung, “Geometrical analysis of inverse kinematics solutions and fuzzy control of humanoid robot arm under kinematics constraints,” in Proceedings International Conference on Mechatronics and Automation 2007, pp.1178-1183.
    [16] T. Geng, M. Lee, and M. Hülse, “Transferring human grasping synergies to a robot,” Mechatronics, Vol.21, No.1, pp.272-284, 2011.
    [17] Y. Xia and J. Wang, “A dual neural network for kinematic control of redundant robot manipulators.” IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol.31, No.1, pp.147–154, 2011.
    [18] Wikipedia for fuzzy control system. Available: http://en.wikipedia.org/wiki/Fuzzy_control
    [19] R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control, John Wiley & Sons, Inc., Singapore 1994.
    [20] RoboCup@Home Japan Open 2012 rule book. Available: http://purl.org/holz/2012_rulebook.pdf

    下載圖示 校內:2017-08-16公開
    校外:2017-08-16公開
    QR CODE