| 研究生: |
鄧經弘 Teng, Ching-Hung |
|---|---|
| 論文名稱: |
不同全人工拇指腕掌關節設計的穩定性分析 In Vitro Stability Analysis of the Trapeziometacarpal Joint Implants |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 拇指腕掌關節 、關節置換 、鞍狀曲率 |
| 外文關鍵詞: | Trapeziometacarpal joint, joint arthroplasty, curvature ratio of saddle type |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類大拇指的拇指腕掌關節有別於其他四指,為特殊的雙凹型、鞍狀關節,包含16條韌帶以限制其動作範圍並提供關節穩定性,因此人類的大拇指關節可以執行特有的拇指對掌動作,即以拇指觸碰到小指,使手部能操作更精細及複雜性的動作。人類的拇指腕掌關節已經演化為較平坦的曲率,使在活動過程中可以表現出較大力量,並承受較大的軸向力以避免脫臼發生。但是曲率較小的關節面雖然可以在動作過程中承受較大的力量,但是相對也會造成關節上的不穩定。
本研究是以六具手部大體實驗,探討不同曲率之鞍狀拇指腕掌關節及球窩關節置換前後之穩定性。實驗方式,先以徒手被動的方式帶動拇指做向上─向下、向外─向內及拇指環狀運動,計算最大的關節動作角度,而後利用自行設計的特製機械儀器帶動與徒手相同的動作範圍角度,並利用電磁場記錄即時性的動作位置。先收取未進行手術的五個動作,爾後,進行關節置換後再次記錄五個動作分別在不同關節情況下帶動的最大活動範圍,並比較關節置換前後,不同曲率與型態對於拇指腕掌關節穩定度之變化。
結果顯示,在與原始關節相同曲率、較大的曲率及球窩關節型態,關節活動範圍和手術前相比,平均分別減少了23.08 %、4.60 % 和14.39 %,但是在較平坦的曲率則是增加了33.40 %。第一掌骨的關節面中心移動出來的軌跡顯是在斜方骨關節表面上,與原始關節在相同的曲率較手術前向橈側及掌側移動,但是在其他兩種關節曲率和球窩關節型態分別向橈側背側和掌側遠端移動。而軌跡的位移和手術前相比較,在與原始關節相同曲率、較大的曲率及較平坦的曲率,平均分別增加了9.90 %、7.07 % 和69.75 %,但是在球窩關節形態則減少了26.99 %。
在結論的部分,較大的關節曲率下會提供較大的穩定性,但是相對會限制活動範圍和軌跡位移,然而在球窩關節形態和鞍狀關節形態相比較,則會提供較大的關節穩定。
Human hands have a unique opposition movement that allow the performance of dexterous and complex motions. These movements are enabled by the Trapeziometacarpal (TMC) joint of the thumb. The TMC joint has two mutually saddle-like articular surfaces and is constrained by 16 supporting ligaments, which limit the range of motion. The TMC joint is flat enough for bearing large axial forces, and the curvature is sufficient to avoid subluxation to perform more powerful strength than other joint can. In addition, flatter joint curvature surface can deal with larger axial loads, but may cause instability during movement.
Six fresh frozen cadaver hands were used for total joint arthroplasty in this study. The prostheses contained three different saddle type curvature implants and one ball-and socket type implant. The electromagnetic tracking device was used to record real-time movement when guiding the thumb movements. The passive motion was first guided by using the manual-control to the maximum end range for four directions, upward-downward and inward-outward, also the circumduction of the thumb. Nest, the simulator was set at the same movement as the manual-control with movement trajectory calculated from manual control. When the intact data were recorded, specimens would have the joint arthroplasty surgery for replacing the articular surface and repeated the tests.
The results showed the ROM of the TMC joint decreased 23.08 %, 4.60 %, and 14.39 % on original curvature, greater curvature, and ball-and socket implant, but increase 35.40 % in prostheses with lower curvature comparison with intact condition in the average. The original curvature shifted the path of the first metacarpal articular surface center to radial-volar side on the articular surface of trapezium bone, but the two different curvature implants and ball-and-socket prostheses shifted to ulnar-volar and volar-distal side. The displacement of the path increased 9.90 %, 7.07 % and 69.75 % on original curvature, greater curvature and lower curvature, but decreased 26.99 % on ball-and socket type comparison with intact condition in the average.
Implants with greater curvature provide greater stability but limit range of motion and joint displacement. However, the ball-and-socket type implant provide greater joint stability than saddle type implants.
1. Craig L. Taylor and R.J. Schwarz, The Anatomy and Mechanics of the Human Hand. Artificial Limbs, 1955: p. 22-34.
2. Pritchett, J.W. and L.S. Habryl, A promising thumb Basal joint hemiarthroplasty for treatment of trapeziometacarpal osteoarthritis. Clin Orthop Relat Res, 2012. 470(10): p. 2756-63.
3. Paul E. Zollinger, et al., Clinical Results of 40 Consecutive Basal Thumb Prostheses and No CRPS Type I After Vitamin C Prophylaxis. The Open Orthopaedics Journal, 2010. 4: p. 62-66.
4. Lin, J.D., J.W. Karl, and R.J. Strauch, Trapeziometacarpal Joint Stability: The Evolving Importance of the Dorsal Ligaments. Clin Orthop Relat Res, 2013.
5. Cooper, C., Fundamentals of hand therapy: Clinical reasoning and treatment guidelines for common diagnoses of the upper extremity. 2007: Elsevier Health Sciences.
6. Aune, S., Osteoarthritis of the first carpo-metacarpal joint. Hereditary dysplasia as an aetiological possibility. Acta chirurgica Scandinavica, 1960. 118: p. 488.
7. Patterson, A.C., Osteoarthritis of the trapezioscaphoid joint. Arthritis & Rheumatism, 1975. 18(4): p. 375-379.
8. Matullo, K.S., A. Ilyas, and J.J. Thoder, CMC arthroplasty of the thumb: a review. Hand (N Y), 2007. 2(4): p. 232-9.
9. Luria, S., et al., Biomechanic analysis of trapeziectomy, ligament reconstruction with tendon interposition, and tie-in trapezium implant arthroplasty for thumb carpometacarpal arthritis: a cadaver study. J Hand Surg Am, 2007. 32(5): p. 697-706.
10. Imaeda, T., et al., Kinematics of the trapeziometacarpal joint: A biomechanical analysis comparing tendon interposition arthroplasty and total-joint arthroplasty. The Journal of Hand Surgery, 1996. 21(No. 4): p. 544-553.
11. Shigeharu Uchiyama, et al., Biomechanical analysis of the trapeziometacarpal joint after surface replacement arthroplasty. The Journal of Hand Surgery, 1999. 24A(No. 3): p. 483-490.
12. Koff, M.F., et al., Joint kinematics after thumb carpometacarpal joint reconstruction: an in vitro comparison of various constructs. J Hand Surg Am, 2007. 32(5): p. 688-96.
13. Kuczynski, K., Carpometacarpal joint of the human thumb. Journal of anatomy, 1974. 118(Pt 1): p. 119.
14. Kuczynski, K., The thumb and the saddle. The hand, 1975. 7(2): p. 120-122.
15. Colman, M., D.P. Mass, and L.F. Draganich, Effects of the Deep Anterior Oblique and Dorsoradial Ligaments on Trapeziometacarpal Joint Stability. The Journal of Hand Surgery, 2007. 32A(No. 3): p. 310-317.
16. Bettinger, P.C., et al., Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg Am, 2000. 25(6): p. 1085-95.
17. Bettinger, P.C., et al., An Anatomic Study of the Stabilizing Ligaments of the Trapezium and Trapeziometacarpal Joint. The Journal of Hand Surgery, 1999. 24(4): p. 786-798.
18. Paul Smutz, W., et al., Mechanical advantage of the thumb muscles. Journal of biomechanics, 1998. 31(6): p. 565-570.
19. Cooney 3rd, W. and E. Chao, Biomechanical analysis of static forces in the thumb during hand function. The Journal of bone and joint surgery. American volume, 1977. 59(1): p. 27.
20. Lafortune, M., et al., Three-dimensional kinematics of the human knee during walking. Journal of Biomechanics, 1992. 25(4): p. 347-357.
21. Goubier, J.N., et al., Normal range-of-motion of trapeziometacarpal joint. Chir Main, 2009. 28(5): p. 297-300.
22. Goubier, J.N., et al., In vivo kinematics of the first carpometacarpal joint after trapezectomy. Chir Main, 2011. 30(2): p. 97-101.
23. Cerveri, P., et al., In vivo validation of a realistic kinematic model for the trapezio-metacarpal joint using an optoelectronic system. Ann Biomed Eng, 2008. 36(7): p. 1268-80.
24. Vincent D. Pellegrini, J., Christopher W. Olcott, and Gary Hollenberg, Contact patterns in the trapeziometacarpal joint: the role of the palmar beak ligament. The Journal of Hand Surgery, 1993. 18(No. 2): p. 238-244.
25. Matsuura, Y., N. Ogihara, and M. Nakatsukasa, A method for quantifying articular surface morphology of metacarpals using quadric surface approximation. International Journal of Primatology, 2010. 31(2): p. 263-274.
26. Marzke, M.W., et al., Comparative 3D quantitative analyses of trapeziometacarpal joint surface curvatures among living catarrhines and fossil hominins. American journal of physical anthropology, 2010. 141(1): p. 38-51.
27. Toshihiko Imaeda, et al., kinematics of the trapeziometacarpal joint after sectioning of ligaments. Kinematics of The Trapeziometacarpal Joint, 1994. 12(No. 2): p. 205-210.
28. Imaeda, T., et al., Ligament length during circumduction of the trapeziometacarpal joint after ligament sectioning. Journal of Musculoskeletal Research, 1999. 3(03): p. 183-194.
29. Zhang, X., et al., A normative database of thumb circumduction in vivo: center of rotation and range of motion. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2005. 47(3): p. 550-561.
30. C. Dumont, et al., Mechanisms of circumduction and axial rotation of the carpometacarpal joint of the thumb. Journal of Physiology And Pharmacology, 2009. 60(Suppl 8): p. 65-68.
31. Badia, A. and S.N. Sambandam, Total joint arthroplasty in the treatment of advanced stages of thumb carpometacarpal joint osteoarthritis. J Hand Surg Am, 2006. 31(10): p. 1605-14.
32. Pendse, A., et al., Surface replacement trapeziometacarpal joint arthroplasty--early results. J Hand Surg Eur Vol, 2009. 34(6): p. 748-57.
33. Eaton, R.G. and J.W. Littler, Ligament reconstruction for the painful thumb carpometacarpal joint. The Journal of Bone & Joint Surgery, 1973. 55(8): p. 1655-1666.
34. Armstrong, A., J. Hunter, and T. Davis, The prevalence of degenerative arthritis of the base of the thumb in post-menopausal women. The Journal of Hand Surgery: British & European Volume, 1994. 19(3): p. 340-341.
35. de la Caffiniere, J.a. and P. Aucouturier, Trapezio-metacarpal arthroplasty by total prosthesis. The Hand, 1979. 11(1): p. 41-46.
36. Cooney, W., R. Linscheid, and L. Askew, Total arthroplasty of the thumb trapeziometacarpal joint. Clinical orthopaedics and related research, 1987. 220: p. 35-45.
37. Vitale, M.A., et al., Trapezium prosthetic arthroplasty (silicone, Artelon, metal, and pyrocarbon). Hand Clin, 2013. 29(1): p. 37-55.
38. Ulrich-Vinther, M., H. Puggaard, and B. Lange, Prospective 1-year follow-up study comparing joint prosthesis with tendon interposition arthroplasty in treatment of trapeziometacarpal osteoarthritis. The Journal of hand surgery, 2008. 33(8): p. 1369-1377.
39. Hansen, T.B. and M. Stilling, Equally good fixation of cemented and uncemented cups in total trapeziometacarpal joint prostheses. A randomized clinical RSA study with 2-year follow-up. Acta Orthop, 2013. 84(1): p. 98-105.
40. Braun, R.M., Total joint replacement at the base of the thumb—preliminary report. The Journal of hand surgery, 1982. 7(3): p. 245-251.
41. Van Rijn, J. and T. Gosens, A cemented surface replacement prosthesis in the basal thumb joint. The Journal of hand surgery, 2010. 35(4): p. 572-579.
42. Bamberger, H.B., et al., Trapeziometacarpal joint arthrodesis: a functional evaluation. The Journal of hand surgery, 1992. 17(4): p. 605-611.
43. Söderkvist, I. and P.-Å. Wedin, Determining the movements of the skeleton using well-configured markers. Journal of biomechanics, 1993. 26(12): p. 1473-1477.
44. Marzke, M.W., et al., Three-dimensional quantitative comparative analysis of trapezial-metacarpal joint surface curvatures in human populations. The Journal of hand surgery, 2012. 37(1): p. 72-76.
45. Ateshian, G., M. Rosenwasser, and V. Mow, Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. Journal of biomechanics, 1992. 25(6): p. 591-607.
46. Cheze, L., et al., A joint coordinate system proposal for the study of the trapeziometacarpal joint kinematics. Computer Methods in Biomechanics and Biomedical Engineering, 2009. 12(3): p. 277-282.
47. Cooney, W.P., 3rd, et al., The kinesiology of the thumb trapeziometacarpal joint. J Bone Joint Surg Am, 1981. 63(9): p. 1371-81.
48. Kuo, L.-C., et al., A kinematic method to calculate the workspace of the trapeziometacarpal joint. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2004. 218(2): p. 143-149.
49. Laurence, M., Replacement arthroplasty of the rotator cuff deficient shoulder. Journal of Bone & Joint Surgery, British Volume, 1991. 73(6): p. 916-919.
校內:2019-08-01公開