簡易檢索 / 詳目顯示

研究生: 黃彥禎
Huang, Yan-Jhen
論文名稱: 應用於馬達驅動之混合式儲能系統
A Hybrid Energy Storage System for Electric Motor Drive
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 93
中文關鍵詞: 混合式儲能系統雙向錯相式直流轉換器超級電容
外文關鍵詞: HESS, bidirectional interleaved DC-DC converter, super-capacitor
相關次數: 點閱:51下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一應用於內藏型永磁馬達驅動之混合式儲能系統,此儲能系統可根據馬達的操作狀態切換不同動作模式,減少電池的充放電次數,實現節能及電池壽命的延長。本文之混合式儲能系統由電池、雙向錯相式兩相直流轉換器,以及超級電容組成。當馬達在加速時,電池經由直流轉換器提供穩定的輸出電壓給馬達驅動器。同時,超級電容也直接對驅動器釋放能量,協助電池分擔馬達加速時所需的大電流。當馬達操作在高定速運轉時,電池經由旁路二極體直接對驅動器供電,減少直流轉換器的開關損失,達到節能效果以利長時間運行。當馬達操作於再生制動模式時,煞車減少的動能會轉換成電能對超級電容或電池充電。若將馬達產生的電流直接對電池回充,會使電池壽命減短。為避免此狀況,此時產生的電流由超級電容先吸收。若超級電容已充飽,再經由直流轉換器提供低漣波的穩定電流對電池回充。
    為設計混合式儲能系統的控制邏輯,故以Simulink®模擬一應用於內藏型永磁馬達之具弱磁機制的磁場導向控制,分析驅動系統特性。然後設計雙向錯相式兩相直流轉換器規格及元件,並以Simplis®驗證參數設計。分析驅動系統及直流轉換器特性後,將電池、直流轉換器以及超級電容結合成一儲能系統來模擬。控制邏輯則根據轉速命令與超級電容的電壓切換動作模式,達到節能並延長電池壽命的目的。最後,實作一1 kW雙向錯相式兩相直流轉換器雛型電路,量測其關鍵波形及不同負載電流下的電路效率。

    This thesis presents the HESS (Hybrid Energy Storage System) for an IPMSM (Interior Permanent Magnet Synchronous Motor) drive, which can switch different modes based on the motor operating conditions to reduce the charge/discharge time of batteries for saving energy and extending the batteries lifetime. The HESS is composed of batteries, a bidirectional interleaved two-channel DC-DC converter, and a super-capacitor. When the motor is accelerating, batteries provide steady voltage to the inverter through bidirectional converter. In the same time, the super-capacitor also releases energy to inverter to share large load current. In high constant speed mode, the battery provides energy to inverter through the shunt diode to save energy for long-term operation. During regenerative braking, the current generated by motor is charged into the super-capacitor. If the current is directly charged into batteries, the lifetime will be shortened. Once the super-capacitor is fully charged, the super-capacitor will discharge through bidirectional converter, which can provide low-ripple voltage for batteries.
    To design the control algorithm for HESS, an FOC with flux-weakening for IPMSM is simulated with Simulink® to analyze the motor drive system. Then the bidirectional interleaved two-channel DC-DC converter is designed and simulated by Simplis® to verify the parameters design. After analyzing the drive system and converter, HESS with control algorithm is simulated, which can switch different modes based on speed command and super-capacitor voltage to achieve saving energy and extending the batteries lifetime. Finally, a 1 kW prototype circuit of bidirectional interleaved two-channel DC-DC converter is implemented and tested to measure the key waveforms and verify the efficiency at different load conditions.

    LIST OF FIGURES VI LIST OF TABLES X NOMENCLATURE XI CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 SUPER-CAPACITOR/BATTERY CONFIGURATION 2 1.3 THESIS OBJECTIVE 4 1.4 THESIS OUTLINE 5 CHAPTER 2 ANALYSES OF DRIVE SYSTEM USING FOC 7 2.1 INTRODUCTION 7 2.2 MATHEMATICAL MODEL OF THREE-PHASE SYNCHRONOUS PERMANENT MAGNET MOTOR 8 2.2.1 State Equations of Three-Phase Synchronous Permanent Magnet Motor 8 2.2.2 Coordinate Transformation 10 2.2.3 Motor Mathematical Equation on Rotational Coordinate System 13 2.3 SPACE VECTOR PULSE WIDTH MODULATION 15 2.4 ANALYSIS OF PMSM DRIVE SYSTEM WITH FOC 21 2.4.1 FOC Diagram with Flux Weakening 21 2.4.2 Flux-weakening Control 22 2.4.3 Compensation Design of Speed Loop, d-axis Current Loop, q-axis Current Loop 24 2.4.4 Simulation of FOC with Flux-Weakening for IPMSM 30 CHAPTER 3 BIDIRECTIONAL INTERLEAVED TWO-CHANNEL DC-DC CONVERTER AND CONTROL ALGORITHM OF HESS 35 3.1 INTRODUCTION 35 3.2 OPERATIONAL PRINCIPLE OF BIDIRECTIONAL INTERLEAVED TWO-CHANNEL CONVERTER 36 3.2.1 Operational Principle of Bidirectional Interleaved Converter in Boost Mode 36 3.2.2 Operational Principle of Bidirectional Interleaved Converter in Buck Mode 42 3.3 SPECIFICATIONS AND PARAMETER DESIGN OF BIDIRECTIONAL INTERLEAVED DC-DC CONVERTER 48 3.4 SIMULATION RESULTS OF BIDIRECTIONAL INTERLEAVED DC-DC CONVERTER 51 3.5 OPERATIONAL ALGORITHMS OF HESS WITH ELECTRIC MOTOR DRIVE 59 3.6 SIMULATION OF HESS 66 CHAPTER 4 CIRCUIT IMPLEMENTATION AND EXPERIMENTAL RESULTS 73 4.1 INTRODUCTION 73 4.2 CIRCUIT IMPLEMENTATION OF BIDIRECTIONAL INTERLEAVED DC-DC CONVERTER 73 4.3 EXPERIMENTAL RESULTS 77 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 89 REFERENCES 90

    [1] A. Emadi, S. S.Williamson and A. Khaligh, “Power Electronics Intensive Solutions for Advanced Electric, Hybrid Electric, and Fuel Cell Vehicular Power Systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567-577, May 2006.
    [2] M. Lo, C. Yu, C. Su, T. Liu, H. Huang and M. Cheng, “Design and Implementation of a Vision-based Treadmill System Driven by a Permanent Magnet Synchronous Motor,” IEEE Trans. Ind. Electron., pp. 2892-2897, Nov. 2007.
    [3] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, “Energy Storage Systems for Automotive Applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, Jun. 2008.
    [4] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett and D. J. Atkinson, “Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA),” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3523-3531, Sep. 2012.
    [5] A. C. Baisden and A. Emadi, “An ADVISOR Based Model of a Battery and an Ultra-capacitor Energy Source for Hybrid Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 199-205, Jan. 2004.
    [6] J. Cao, N. Schofield and A. Emadi, “Battery Balancing Methods: A Comprehensive Review,” in Proc. IEEE Veh. Power Propulsion Conf., Harbin, China, pp. 1-6, Sep. 2008.
    [7] S. T. Huang, D. C. Hopkins and C. R. Mosling, “Extension of Battery Life via Charge Equalization Control,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 96-104, Feb. 1993.

    [8] R. M. Schupbach and J. C. Balda, “Comparing DC–DC Converters for Power Management in Hybrid Electric Vehicles,” in Proc. IEEE Int. Elect. Mach. Drives Conf., Madison, WI, USA, pp. 1369-1374, Jun 2003.
    [9] J. Cao, D. Bharathan and A. Emadi, “Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles’ Electrical Propulsion Systems,” in Proc. IEEE Veh. Power Propulsion Conf., Arlington, TX, pp. 477-482, Sep. 2007.
    [10] L. Gao, R. A. Dougal and S. Liu, “Power Enhancement of an Actively Controlled Battery/Ultracapacitor Hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, Jan. 2005.
    [11] A. W. Stienecker, T. Stuart and C. Ashtiani, “A Combined Ultracapacitor-lead Acid Battery Storage System for Mild Hybrid Electric Vehicles,” in Proc. IEEE Veh. Power Propulsion Conf., Chicago, IL, p. 6, Sep. 2005.
    [12] M. Ortuzar, J. Moreno and J. Dixon, “Ultracapacitor-based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, Aug. 2007.
    [13] W. Lhomme, P. Delarue, P. Barrade, A. Bouscayrol and A. Rufer, “Design and Control of a Supercapacitor Storage System for Traction Applications,” in Proc. Conf. Rec. Ind. Appl. Conf., Kowloon, Hong Kong, China, vol. 3, pp. 2013-2020, Oct. 2005.
    [14] D. Liu and H. Li, “A Three-port Three-phase DC–DC Converter for Hybrid Low Voltage Fuel Cell and Ultracapacitor,” in Proc. IEEE 32nd Annu. Conf., Paris, France, Ind. Electron., vol. 7, no. 1, pp. 1369- 1374, Jun. 2003.

    [15] A. Di Napoli, F. Crescimbini, F. Guilii Capponi and L. Solero, “Control Strategy for Multiple Input DC–DC Power Converters Devoted to Hybrid Vehicle Propulsion Systems,” in Proc. IEEE Int. Symp. Ind. Electron., vol. 3, no. 2, pp. 1036-1041, May 2002.
    [16] A. Napoli, F. Crescimbini, S. Rodo and L. Solero, “Multiple Input DC–DC Power Converter for Fuel-cell Powered Hybrid Vehicles,” in Proc. IEEE 33rd Annu. Power Electron. Spec. Conf., Cairns, Qld., Australia, vol. 4, no. 5, pp. 1685-1690, Apr. 2002.
    [17] A. E. Fitzgerald, ELECTRIC ACHINERY, New York: McGraw-Hill Companies, 2003.
    [18] Microsemi Corporation, “Park, Inverse Park and Clarke, Inverse Clarke Transformations MSS Software Implementation, 2013. “[Online]. Available: http://www.microsemi.com/documentportal/doc_view/132799-park-inverse-park-and-clarke-inverse-clarke-transformations-mss-software-implementation-user-guide.
    [19] Texas Instruments, ”Clarke & Park Transforms on the MS320C2xx, 1997. “[Online]. Available: http://www.ti.com/lit/an/bpra048/bpra048.pdf.
    [20] T. H. Nguyen, “Design of 10kW Interior Permanent Magnet Motor for EV Traction,” M.S. thesis, Dept. Systems and Naval Mechatronic Eng., National Cheng Kung Univ., Tainan, Taiwan, 2016.
    [21] W. Liang, Y. Xu, Y. Li, G. Yang and J. Zou, “PWM Frequency Voltage Noise Cancellation in Three-phase VSI Using the Novel SVPWM Strategy,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8596-8606, Oct. 2018.
    [22] Y. Bai, X. Tang and G. Wu, “Speed Control of Flux Weakening on Interior Permanent Magnet Synchronous Motors,” Transactions of China Electro Technical Society, vol. 26, no 9, pp. 54-60, 2011.
    [23] J. Cao and A Emadi.: “A New Battery/Ultracapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-in Hybrid Electric Vehicles”, IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
    [24] P. -L. Wong, P. Xu, P. Yang and F. C. Lee, “Performance Improvements of Interleaving VRMs with Coupling Inductors,” IEEE Trans., Power Electron., vol. 16, no. 4, pp. 499-507, July 2001.

    無法下載圖示 校內:2024-01-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE