簡易檢索 / 詳目顯示

研究生: 胡智皓
Hu, Chih-Hao
論文名稱: 選擇順應性裝配機械手臂之外力估測與順應控制研究
Study on External Force Estimation and Compliance Control of Selective Compliance Assembly Robot Arm
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 97
中文關鍵詞: 選擇順應性裝配機械手臂系統鑑別外力估測順應控制阻抗控制電動輔助力
外文關鍵詞: System Identification, External Force Estimation, Compliance Control, Impedance Control, Power-Assisted
相關次數: 點閱:148下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來智慧自動化的發展蔚為潮流,隨著機器人於日常生活中的應用日益普遍,機械手臂的人機互動功能也成為產業界與學術界的研究重點。本論文之主旨為開發選擇順應性裝配機械手臂的順應控制功能,使機械手臂能夠對使用者所提供的外力表現出適當的順應性。在開發順應控制功能時,需取得機械手臂與外界環境的接觸力資訊,外力資訊通常可藉由力量感測器取得,但力量感測器之價格昂貴且容易有硬體配置空間不足之問題,故採用無力量感測器之方法進行外界接觸力估測。本論文中分別使用電動輔助力控制架構及阻抗控制架構以實現機械手臂之順應控制功能。電動輔助力控制是獲取使用者所提供的力量資訊後,透過馬達系統產生一輔助力,以協助使用者在操作馬達裝置時達到省力之效果。阻抗控制則是透過控制器之設計,使機械手臂末端模擬一質量-阻尼系統,以產生順應環境的特性,並藉由調整質量係數與阻尼係數來改變機構的順應程度。

    In recent years, the development of intelligent automation has become an inevitable trend. As the robots become more and more popular in human daily life, human-robot interaction has become an important research topic for industry and academics. This thesis aims at developing compliance control methods on selective compliance assembly robot arm (SCARA), so that robot arms are able to adapt to external forces. In order to develop compliance control methods, the contact force information between the robot arm and the external environment needs to be obtained. Generally, the information of external forces can be obtained by using force sensors. However, the force sensors have some disadvantages such as high costs and additional requirements for extra configuration space. Therefore, this thesis employs sensorless methods for obtaining external forces in order to avoid potential problems caused by using force sensors. In this thesis, two control structures – power-assisted control structure and impedance control structure – are implemented on a SCARA to improve its robot compliance during human-robot interaction. A power-assisted controller can provide an assisting force to a motor system after obtaining the external force information. With the assisting force, users can save efforts and time while operating the motor system. On the other hand, this thesis uses a robot arm to simulate a mass-damper system, which can provide a compliant behavior to the robot arm. In addition, different modulation strategies for calculating power-assisted gains and impedance parameters are proposed and tested in this thesis.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒論 1 1-1 簡介 1 1-2 研究動機與目的 3 1-3 文獻回顧 4 1-4 論文架構 7 第二章 SCARA控制架構 8 2-1 SCARA運動學 9 2-2 SCARA動態數學模型 12 2-3 SCARA系統鑑別 17 2-4 控制器設計 21 2.4.1 回授線性化控制 22 2.4.2 計算力矩控制 24 第三章 外力轉矩估測法 27 3-1 外力轉矩估測法簡介 27 3-2 干擾量觀測器與轉矩估測 28 3-3 基於廣義動量之外力轉矩估測法 32 3-4 外力轉矩與外界接觸力之轉換 35 第四章 電動輔助力控制 37 4-1 電動輔助力簡介 37 4-2 電動輔助力架構 38 4-3 電助力增益之規劃 39 第五章 順應控制 47 5-1 順應控制理論介紹 47 5-2 阻抗控制架構 48 5-3 阻抗控制之參數調變策略 51 第六章 實驗設備與結果 54 6-1 實驗設備 54 6-2 實驗ㄧ:系統參數鑑別與循跡控制實驗 61 6-3 實驗二:外力轉矩估測實驗 76 6-4 實驗三:電動輔助力控制實驗 79 6-5 實驗四:阻抗控制實驗 84 6-6 實驗五:順應控制實驗 87 第七章 結論與未來建議 91 7-1 結論 91 7-2 未來建議 92 參考文獻 93

    [1] C. Atkeson, C. An, and J. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” Int. J. Robot. Res., vol. 5, no. 3, pp. 101–119, Sep. 1986.
    [2] F. Caccavale and P. Chiacchio, “Identification of dynamic parameters and feedforward control for a conventional industrial manipulator,” Control Eng. Practice, vol. 2, no. 6, pp. 1039–1050, Dec. 1994.
    [3] S.-K. Lin, “An identification method for estimating the inertia parameters of a manipulator,” J. Robot. Syst., vol. 9, no. 4, pp. 505–528, Sep. 1992.
    [4] 鄭晏維,六軸機械手臂運動之重力補償與平面避障研究,碩士論文,國立成功大學,Jun. 2014。
    [5] J. Swevers, W. Verdonck, and J. De Schutter, “Dynamic model identification for industrial robots,” IEEE Control Syst. Mag., vol. 27, no. 5, pp. 58–71, Oct. 2007.
    [6] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, “Experimental robot identification using optimized periodic trajectories,” Mech. Syst. Signal Process., vol. 10, no. 5, pp. 561–577, Sep. 1996.
    [7] J. Swevers, C. Ganseman, D. B. Tükel, J. De Schutter, and H. Van Brussel, “Optimal robot excitation and identification,” IEEE Trans. Robot. Automat., vol. 13, no. 5, pp. 730–740, Oct. 1997.
    [8] F. Reyes and R. Kelly, “Experimental evaluation of model-based controllers on a direct-drive robot arm,” Mechatronics, vol. 11, no. 3, pp. 267–282, Apr. 2001.
    [9] G. Buondonno and A. De Luca, “Efficient computation of inverse dynamics and feedback linearization for VSA-based robots,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 908–915, Mar. 2016.
    [10] C. H. An, C. G. Atkeson, J. Griffiths, and J. M. Hollerbach, “Experimental evaluation of feedforward and computed torque control,” IEEE Trans. Robot. Automat., vol. 5, no. 3, pp. 368–373, Jun. 1989.
    [11] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of mechanical manipulators,” IEEE Trans. Automat. Contr., vol. 25, no. 3, pp. 468-474, Jun. 1980. 
    [12] Y. Tang, “Terminal sliding mode control for rigid robots,” Automatica, vol. 34, no. 1, pp. 51–56, Jan. 1998.
    [13] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 849–859, Dec. 2006.
    [14] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” Int. J. Robot. Res., vol. 6, no. 3, pp. 49–59, Sep. 1987.
    [15] J.-J. E. Slotine and W. Li, “Adaptive manipulator control: A case study,” IEEE Trans. Automat. Contr., vol. 33, no. 11, pp. 995–1003, Nov. 1988.
    [16] H. Koch, A. Konig, A. Weigl-Seitz, K. Kleinmann, and J. Suchy, “Multisensor contour following with vision, force, and acceleration sensors for an industrial robot,” IEEE Trans. Instrum. Meas., vol. 62, no. 2, pp. 268–280, Feb. 2013.
    [17] F. Petit, A. Dietrich, and A. Albu-Schaffer. “Generalizing torque control concepts: Using well-established torque control methods on variable stiffness robots,” IEEE Robot. Automat. Mag., vol. 22, no. 4, pp. 37–51, Dec. 2015.
    [18] X. Dong, S. Zhang, X. Li, M. Liu, and H. Wei, “Impedance control of robot manipulator with model reference torque observer,” in IEEE Conf. on Ind. Electron. Applicat., Melbourne, VIC, 2013, pp. 994-998.
    [19] 陳昭仁,基於觀測器之阻抗控制與被動式速度控制於手臂健身/復健裝置之應用,碩士論文,國立成功大學,Jun. 2013。
    [20] A. De Luca and R. Mattone, “Actuator failure detection and isolation using generalized momenta,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2003, pp. 634–639.
    [21] 林文彬,電動自行車之電助力系統開發,碩士論文,國立成功大學,Jul. 2010。
    [22] 李忠穎,系統鑑別與電動輔助力系統之開發,碩士論文,國立高雄第一科技大學,Jun. 2011。
    [23] S. Komada and K. Ohnishi, “Force feedback control of robot manipulator by the acceleration tracing orientation method,” IEEE Trans. Ind. Electron., vol. 37, no.1, pp. 6–12, Feb. 1990. 
    [24] F. Jatta, G. Legnani, A. Visioli, and G. Ziliani, “On the use of velocity feedback in hybrid force/velocity control of industrial manipulators,” Control Eng. Pract., vol. 14, no. 9, pp. 1045–1055, Sep. 2006.
    [25] 陳漢雄,機械手臂混合位置/阻抗控制之研究,碩士論文,國立台灣科技大學,Jul. 2010。
    [26] M.-S. Ju, C.-C. K. Lin, D.-H. Lin, I.-S. Hwang, and S.-M. Chen, “A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, no.3, pp. 349–358, Sep. 2005.
    [27] N. Hogan, “Impedance control: An approach to manipulation,” in Proc. Amer. Control Conf., San Diego, 1984, pp. 304–313.
    [28] C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, “On the passivity based impedance control of flexible joint robots,” IEEE Trans. Robot., vol. 24, no. 2, pp. 416–429, Apr. 2008.
    [29] J. Zhang and C. C. Cheah, “Passivity and stability of human-robot interaction control for upper-limb rehabilitation robot,” IEEE Trans. Robot., vol. 31, no. 2, Apr. 2015.
    [30] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, “Collision detection and safe reaction with the DLR-III lightweight manipulator arm,” in IEEE/RSJ Int. Conf. Intelligent Robots and Syst., Beijing, China, 2006, pp. 1623–1630.
    [31] A. De Luca and R. Mattone, “Sensorless robot collision detection and hybrid force/motion control,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 1011–1016, 2005.
    [32] A. C. Smith, F. Mobasser, and K. Hashtrudi-Zaad, “Neural-network-based contact force observers for haptic applications,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1163–1175, Dec. 2006.
    [33] H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, and H. van Der Kooij, “Compliant actuation of rehabilitation robots,” IEEE Robot. Autom. Mag., vol. 15, no. 3, pp. 60–69, Sep. 2008.
    [34] T.-Y. Choi, B.-S. Choi, and K.-H. Seo, “Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety,” IEEE Trans. Control Syst. Technol., vol. 19, no. 4, pp. 832–842, Jul. 2011.
    [35] H. Yu, S. Huang, G. Chen, Y. Pen, and Z. Guo, “Human-robot interaction control of rehabilitation robots with series elastic actuators,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1089–1100, Oct. 2015.
    [36] M. S. Erden and T. Tomiyama, “Human-intent detection and physically interactive control of a robot without force sensors,” IEEE Trans. Robot., vol. 26, no. 2, pp. 370–382, Apr. 2010.
    [37] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, ‘‘Six-DOF impedance control based on angle/axis representations,’’ IEEE Trans. Robot. Automat., vol. 15, no. 2, pp. 289–300, Apr. 1999.
    [38] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani, “Six-DOF impedance control of dual-arm cooperative manipulators,” IEEE/ASME Trans. Mechatronics, vol. 13, no. 5, pp. 576–586, Oct. 2008.
    [39] 陳正欽,以關節位置命令為基礎之機械手臂阻抗控制之實現,碩士論文,國立台灣科技大學,Jul. 2008。
    [40] V. Duchaine, B. M. St-Onge, D. Gao, and C. Gosselin, “Stable and intuitive control of and intelligent assist device,” IEEE Trans. Haptics, vol. 5, no. 2, pp. 148–159, Apr.–Jun. 2012.
    [41] S. P. Buerger and N. Hogan, “Complementary stability and loop shaping for improved human–robot interaction,” IEEE Trans. Robot., vol. 23, no. 2, pp. 232–244, Apr. 2007.
    [42] F. Ficuciello, L. Villani, and B. Siciliano, “Variable impedance control of redundant manipulators for intuitive human-robot physical interaction,” IEEE Trans. Robot., vol. 31, no. 4, pp. 850–863, Aug. 2015.
    [43] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Task-space control of robot manipulators with null-space compliance,” IEEE Trans. Robot., vol. 30, no. 2, pp. 493–506, Apr. 2014.
    [44] S. P. Chan, “A disturbance observer for robot manipulators with application to electronic components assembly,” IEEE Trans. Ind. Electron., vol. 42, no. 5, pp. 487–493, Oct. 1995.
    [45] W.-H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly, “A nonlinear disturbance observer for robotic manipulators,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 932–938, Aug. 2000.
    [46] K. S. Eom, I. H. Suh, and W. K. Chung, “Disturbance observer based path tracking control of robot manipulator considering torque saturation,” Mechatronics, vol. 11, no. 3, pp. 325–343, Apr. 2001. 
    [47] J. Back and H. Shim, “Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: A nonlinear version of disturbance observer,” Automatica, vol. 44, no. 10, pp. 2528–2537, Oct. 2008.
    [48] M.-C. Tsai, E.-C Tseng, and M.-Y. Cheng, “Design of a torque observer for detecting abnormal load,” Control Eng. Practice, vol. 8, no. 3, pp. 259–269, Mar. 2000.
    [49] M. J. Kim and W. K. Chung, “Disturbance-observer-based PD control of flexible joint robots for asymptotic convergence,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1508–1516, Dec. 2015.
    [50] O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. Robot. Autom., vol. 3, no. 1, pp. 43–53, Feb. 1987.
    [51] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data,” IEEE Trans. Ind. Electron., vol. 39, no. 1, pp. 11–19, Feb. 1992.
    [52] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. New York: Wiley, 2006.
    [53] Available: http://kvarc.extra.hu/step/motor/emc/delta_robot.jpg
    [54] Available: http://www.deltaww.com/filecenter/Products/Images/06/06060
    1/DRS40L_L.JPG
    [55] Available: http://mms.digitimes.com/NewsImg/2011/0517/232759-1-SYZ
    GV.jpg
    [56] Available: http://www.kensho.com.tw/upload/pro/23/image/402_display_
    LBRiiwa-01.jpg
    [57] Available: https://zh.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B
    [58] Available: https://en.wikipedia.org/wiki/Industry_4.0

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE