| 研究生: |
吳冠德 Wu, Kuan-Te |
|---|---|
| 論文名稱: |
應用森林繁衍智能演算法於配電變壓器維護排程規劃之研究 Application of Forest Optimization Algorithm to Maintenance Scheduling of Distribution Transformers |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 森林繁衍智能演算法 、配電變壓器 、維護排程規劃 |
| 外文關鍵詞: | Forest optimization algorithm, distribution transformer, maintenance scheduling |
| 相關次數: | 點閱:143 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前電力公司常以時間基準進行例行性維護,但因配電變壓器數量龐大及運轉狀況不一,難以確認維護效能,故本論文提出應用森林繁衍智能演算法於配電變壓器維護排程規劃,並將配電變壓器平均故障率及絕緣壽命減少百分比統整納入考量,因而可依各變壓器運轉狀況彈性調整維護週期。本文所提出之森林繁衍智能演算法,係以模擬森林樹木傳播種子之繁衍行為加以延伸建模,可適於求解最佳化問題。而為驗證本文所提方法之可行性,本文分別經由包含不同變壓器個數之系統進行模擬分析,同時與其他演算法進行比較。由測試結果可知,本文所提方法應用於維護排程規劃上,確具有高度可行性,並有助於規劃人員應用參考。
Electric power companies often perform the maintenance work at a fixed time interval, yet because of the large number of distribution transformers and various operating conditions, such a strategy may not be effective. This thesis, therefore, proposes to apply the forest optimization algorithm to form a maintenance schedule of distribution transformers, where both averaged failure rate and percentage loss of transformer insulation life are taken into consideration so as to reach a schedule of high flexibility. This forest optimization algorithm is developed based on the mimicking of seeding behaviors of forests, by which it is proved to be suitable for solving the optimization problem. To validate the feasibility of this approach, simulations have been made along with comparisons of other methods through systems of different number of distribution transformers. Test results demonstrate the feasibility of the proposed method for the maintenance scheduling applications, which can be served as useful references for power system planning engineers.
[1]C. Sumereder, “Statistical lifetime of hydro generators and failure analysis, ” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 3, pp. 678-685, June 2008.
[2]J. B. Ali, B. C. Morello, L. Saidi, S. Malinowski, and F. Fnaiech, “Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network,” Mechanical Systems and Signal Processing, vol. 56-57, pp. 150-172, May 2015.
[3]T. Tsuboi, J. Takami, S. Okabe, K. Inami, and K. Aono, “Weibull parameter of oil-immersed transformer to evaluate insulation reliability on temporary overvoltage,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 6, pp. 1863-1868, December 2010.
[4]T. Tsuboi, J. Takami, S. Okabe, K. Inami, and K. Aono, “Aging effect on insulation reliability evaluation with weibull distribution for oil-immersed transformers,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 6, pp. 1869-1876, December 2010.
[5]J. Zhang, T. Zhou, H. Wu, Y. Wu, W. Wu, and J. Ren, “Constant-step-stress accelerated life test of white OLED under Weibull distribution case,” IEEE Transactions on Electron Devices, vol. 59, no. 3, pp. 715-720, March 2012.
[6]IEEE Std C57.91-2011, “IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators,” pp. 98-102, March 2012.
[7]IEC Publication 354, “Loading guide for oil-immersed power transformers,” September 1991.
[8]K. T. Muthanna, A. Sarkar, K. Das, and K. Waldner, “Transformer insulation life assessment,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 150-156, January 2006.
[9]S. Tojo, “Proposition of individual loading guide for power transformers,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1383-1389, July 2006.
[10]D. J. Tylavsky, Q. He, J. Si, G. A. McCulla, and J. R. Hunt, “Transformer top-oil temperature modeling and simulation,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1219-1225, October 2000.
[11]S. Yakov, M. de Nigris, and P. G. Antonioli, “Study of the Life Consumption of Distribution Transformers and Assessment of End-of-life Criteria,” 12th International Conference on Electricity Distribution, vol. 1, pp. 1.16/1 - 1.16/5, May 1993.
[12]A. J. Kachler and I. Hohlein, “Aging of cellulose at transformer service temperatures. Part 1: Influence of type of oil and air on the degree of polymerization of pressboard, dissolved gases, and furanic compounds in oil,” IEEE Electrical Insulation Magazine, vol. 21, no. 2, pp. 15-21, April 2005.
[13]I. Hohlein and A. J. Kachler, “Aging of cellulose at transformer service temperatures. Part 2. Influence of moisture and temperature on degree of polymerization and formation of furanic compounds in free-breathing systems,” IEEE Electrical Insulation Magazine, vol. 21, no. 5, pp. 20-24, October 2005.
[14]M. Compare and E. Zio, “Genetic algorithms in the framework of dempster-shafer theory of evidence for maintenance optimization problems,” IEEE Transactions on Reliability, vol. 64, no. 2, pp. 645-660, June 2015.
[15]M. Hinow and M. Mevissen, “Substation maintenance strategy adaptation for life-cycle cost reduction using genetic algorithm,” IEEE Transactions on Power Delivery, vol. 26, no. 1, pp. 197-204, January 2011.
[16]M. Marseguerra, E. Zio, and L. Podofillini, “Optimal reliability/availability of uncertain systems via multi-objective genetic algorithms,” IEEE Transactions on Reliability, vol. 53, no. 3, pp. 424-434, September 2004.
[17]S. Sundhararajan and A. Pahwa, “Optimal selection of capacitors for radial distribution systems using a genetic algorithm,” IEEE Transactions on Power Systems, vol. 9, no. 3, pp. 1499-1507, August 1994.
[18]E. K. P. Chong and S. H. Zak, An introduction to optimization, 4th edition, Hoboken, New Jersey, U.S.A., Wiley, 2013.
[19]N. Kumarappan and K. Suresh, “Particle swarm optimization based maintenance scheduling using levelized risk method and evaluation of system well being index,” IEEE Congress on Evolutionary Computation, Barcelona, pp. 1-7, July 2010.
[20]H. Qingtian, C. Wenjing, and S. Tao, “Maintenance route planning based on particle swarm optimizattion algorithm,” 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, pp. 195-198, March 2012.
[21]「普通型桿上變壓器」,台灣電力公司材料標準,101年8月。
[22]「密封型桿上變壓器」,台灣電力公司材料標準,99年7月。
[23]「亭置式變壓器」,台灣電力公司材料標準,100年8月。
[24]變壓器設備管理系統(TFMS)系統說明手冊,台灣電力公司業務處,98年8月。
[25]配電線路設備維護巡檢管理系統(DAMS)操作手冊,台灣電力公司,100年8月。
[26]「配電技術手冊(三)運轉維護篇」,台灣電力公司配電處,2014年11月。
[27]H. Pham and C. D. Lai, “On recent generalizations of the Weibull distribution,” IEEE Transactions on Reliability, vol. 56, no. 3, pp. 454-458, September 2007.
[28]M. A. Fawzan, “Methods for estimating the parameters of the Weibull distribution,” King Abdulaziz City for Science and Technology, Saudi Arabia, pp. 1-11, October 2000.
[29]J. C. Fothergill, “Estimating the cumulative probability of failure data points to be plotted on Weibull and other probability paper,” IEEE Transactions on Electrical Insulation, vol. 25, no. 3, pp. 489-492, June 1990.
[30]D. Cousineau, “The fallacy of large shape parameters when using the two-parameter weibull distribution,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 6, pp. 2095-2102, December 2011.
[31]S. Nadarajah and S. Kotz, “On some recent modifications of Weibull distribution,” IEEE Transactions on Reliability, vol. 54, no. 4, pp. 561-562, December 2005.
[32]M. Ghaemi and M. R. F. Derakhshi, “Forest optimization algorithm,” Expert Systems with Applications, vol. 41, no. 15, pp. 6676-6687, November 2014.
[33]S. J. Huang, W. F. Su, X. Z. Liu, and K. T. Wu, “Application of forest optimization algorithm to placement planning of distributed resources and capacitors,” Proceedings of 2015 Intelligent Living Technology Conference, Taiwan, June 2015, pp. 148-153.
校內:2021-06-25公開