簡易檢索 / 詳目顯示

研究生: 莊景翔
Chuang, Ching-Hsiang
論文名稱: 應用於感應加熱之數位控制電源系統
Digital Control Power System Used for Induction Heating
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 64
中文關鍵詞: 感應加熱擾動觀察法最大功率追蹤負載並聯諧振
外文關鍵詞: Induction heating, Perturbation and Observation method, Maximum Power Point Tracking, Parallel resonant
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文擬研製一應用於感應加熱之數位控制電源系統,其系統架構分為前級的降壓轉換器和後級的全橋換流器。透過降壓轉換器降低輸出功率,系統於剛啟動時先進行一次諧振頻率掃描,尋找40 kHz ~ 60 kHz 中諧振頻率的絕對極大值。全橋換流器使用擾動觀察法來實現感應加熱所需之最大功率追蹤,藉由小幅度擾動之前鎖定的諧振頻率來維持其相對極大值,確保最大化感應加熱產生之實際輸出功率。而諧振電容與加熱負載形成一等效R-L-C並聯諧振電路,當電路發生諧振時,會有最大功率轉移效果,使負載加熱達到目的。本文首先介紹感應加熱之基本理論,接著對研究之電路的動作模式及控制方法進行分析,並設計電路功率元件之參數。最後實作出一輸入電壓 300 Vdc、輸出功率6 kW及切換頻率40 kHz ~ 60 kHz之雛型電路,並由實驗結果驗證本文之理論分析。

    The main purpose of this thesis is to propose a digital control power system used for induction heating. The system is separated into two stages-the former, a buck converter and the latter, a full-bridge inverter. The output power is limited through the buck converter while the system begins a one-time scan between 40 kHz ~ 60kHz searching for the absolute maximum resonant frequency in this interval. Perturbation and Observation method is applied to the full-bridge inverter to realize Maximum Power Point Tracking. The actual output power generated by induction heating is maximized by slightly adjusting the resonant frequency found before to maintain its local maximum. When the parallel R-L-C resonant circuit formed by the resonant capacitor and load begins to resonate, maximum power is transferred to the load, causing it to begin to heat. In this thesis, the basic theory of induction heating is introduced initially. Then, the operating principles and control methods of the circuit are discussed, and the design procedure is also described. Finally, a prototype of the system with input voltage 300 Vdc, output power 6 kW and switching frequency between 40 kHz ~ 60 kHz is implemented to verify the theoretical analysis.

    TABLE OF CONTENTS 摘 要 I ABSTRACT II 誌 謝 III CHAPTER 1 INTRODUCTION 1 1.1 Background and motivation 1 1.2 Outline 4 CHAPTER 2 BASIC THEORY OF INDUCTION HEATING AND CIRCUIT SYSTEM ANALYASIS 5 2.1 Fundamental principles of induction heating 5 2.2 Electromagnetic induction effect 7 2.2.1 Skin effect 7 2.2.2 Proximity effect 9 2.2.3 Magnetic field concentration effect 9 2.2.4 Edge effect 10 2.3 Circuit system 11 2.3.1 Converter structures 11 2.3.2 Inverter structures 15 2.3.3 Equivalent model of the load 19 2.4 Applications and features of induction heating 22 CHAPTER 3 BASIC ALGORITHMS AND PROPOSED CONTROL METHOD 24 3.1 One-time scanning 26 3.2 Maximum Power Point Tracking (MPPT) 27 3.2.1 Constant Voltage method 28 3.2.2 Perturbation and Observation method 29 3.2.3 Incremental Conductance method 30 3.2.4 Summary 31 3.3 Proposed control method 32 3.4 System program organization 35 3.4.1 One-time scanning program flow 37 3.4.2 Perturbation and Observation program flow 39 CHAPTER 4 DESIGN AND EXPERIMENTAL RESULTS 41 4.1 Circuit specifications 41 4.1.1 Digital signal processor TMS320F28335 43 4.1.2 Resonant capacitor 45 4.1.3 Heating coil 46 4.1.4 Driving circuit 47 4.1.5 Voltage feedback circuit 48 4.1.6 Curreent feedback circuit 49 4.2 Experimental results and discussions 50 4.2.1 Experimental results for one-time scanning 51 4.2.2 Experimental results for Peturbation and Observation 53 4.2.3 Experimental results for the proposed control method 55 CHAPTER 5 CONCLUSIONS AND FURURE WORKS 59 5.1 Conclusions 59 5.2 Future works 59 REFERENCES………………………………………………………………….…………62

    REFERENCES

    [1] O. Lucia, P. Maussion, E. J. Dede, and J. M. Burdio, “Induction heating technology and its applications: past developments, current technology, and future challenges,” IEEE Trans. on Industrial Electronics, vol. 61, no. 5, pp. 2509-2520, 2014.
    [2] J. Davies and P. Simpson, Induction heating handbook, The McGraw-Hill Companies, Inc., London, 1979.
    [3] S. Zinn and S. L. Semiatin, Elements of induction heating: design, control, and applications, Electric Power Research Institute, Inc., U.S.A., 1988.
    [4] Giancoli, Douglas C., Physics, 4th Ed, Prentice Hall, (1995).
    [5] CRC Handbook of Chemistry and Physics, 64th ed.
    [6] P. Poulichet, F. Costa, and E. Laboure, “High-frequency modeling of a current transformer by finite-element simulation,” IEEE Trans. on Magnetics, vol. 39, no 2, pp. 998-1007, 2003.
    [7] V. Fireteanu and P. Roehr, “Finite element analysis of the tranverse flux induction heating of moving magnetic steel sheets,” IEEE ATEE, pp. 1-6, 2013.
    [8] D. Wetz, D. Landen, S. Satapathy, and D. Surls, “Inductive heating of materials for the study of high temperature mechanical properties,” IEEE Trans. on Dielectrics and Electrical Insulation, vol. 18, no. 4, pp. 1342-1351, 2011.
    [9] J. R. Garcia, J. M. Burdio, A. Martinez, and J. Sancho, “A method for calculating the workpiece power dissipation in induction heating processes,” IEEE APEC, vol. 1, pp. 302-307, 1994.
    [10] E. J. Dede, J.Jordan, J. V. Gonzalez, J. Linares, V. Esteve, and E. Maset, “Conception and design of a parallel resonant converter for induction heating,” IEEE APEC, pp. 38-44, 1991.
    [11] S. Dieckerhoff, M. J. Ruan, and R. W. De Donker, “Design of an IGBT-based LCL-resonant inverter for high-frequency induction heating,” IEEE IAS, vol. 3, pp. 2039-2045, 1999.
    [12] E. J. Dede, J. Jordan, V. Esteve, J. M. Espi, and S. Casans, “Behaviour of series and parallel resonant inverters for induction heating in short-circuit conditions,” IEEE IPEMC, vol. 2, pp. 645-649, 2000.
    [13] S. Chudjuarjeen, A. Sangwang, and C. Koompai, “An improved LLC resonant inverter for induction-heating applications with asymmetrical control,” IEEE Trans. on Industry Applications, vol. 58, no. 7, pp. 2915-2925, 2011.
    [14] A. Cleary-Balderas and A. Medina-Rios, “Improving power quality in series resonant inverter for induction heating applications,” IEEE IEMDC, pp. 1137-1141, 2013.
    [15] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, applications, and design, third edition, John Wiley & Sons, Inc., U. S. A., 2002.
    [16] 陳建興,「全橋相移式高頻溫控感應加熱器之設計與研製」,中原大學電機工程學系碩士論文,民國九十四年六月。
    [17] 梁適安,高頻交換式電源供應器原理與設計,全華科技圖書股份有限公司,台北,民國八十四年。
    [18] J. G. Cho, J. A. Sabate, G. Hua, and F. C. Lee, “Zero-voltage and zero-current-switching full bridge PWM converter for high-power applications,” IEEE Trans. on Power Electronics, vol. 11, no. 4, pp. 622-628, 1996.
    [19] E. S. Kim, K. Y. Joe, M. H. Kye, Y. H. Kim, and B. D. Yoon, “An improved soft-switching PWM FB DC-DC converter for reducing conduction losses,” IEEE Trans. on Power Electronics, vol. 14, no. 2, pp. 258-264, 1999.
    [20] T. Morimoto, S. Shirakawa, O. Koudriavtsev, and M. Nakaoka, “Zero-voltage and zero-current hybrid soft-switching phase-shifted PWM DC-DC power converter for high power applications,” IEEE APEC, vol. 1, pp. 104-110, 2000.
    [21] F. S. Hamdad and A. K. S. Bhat, “A novel pulsewidth control scheme for fixed-frequency zero-voltage-switching DC-DC PWM bridge converter,” IEEE Trans. on Industrial Electronics, vol. 48, no. 1, pp. 101-110, 2001.
    [22] X. B. Ruan and Y. G. Yan, “A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg,” IEEE Trans. on Industrial Electronics, vol. 48, no. 4, pp. 777-785, 2001.
    [23] K. W. Seok and B. H. Kwon, “An improved zero-voltage and zero-current-switching full-bridge PWM converter using a simple resonant circuit,” IEEE Trans. on Industrial Electronics, vol. 48, no. 6, pp. 1205-1209, 2001
    [24] T. Mishima, C. Takami, and M. Nakaoka, “A new current phasor-controlled ZVS twin half-bridge high-frequency resonant inverter for induction heating,” IEEE Trans. on Industrial Electronics, vol. 61, no. 5, pp. 2531-2545, 2001.
    [25] C. X. Liu and L. Q. Liu, “An improved perturbation and observation MPPT method of photovoltaic generate system,” IEEE ICIEA, pp. 2966-2970, 2009.
    [26] T. J. A. Santos and A. Galhardo, “A perturbation and observation routine used to control a power converter,” NABIC, pp. 78-83, 2014.
    [27] I. Abdalla, L. Zhang, and J. Corda, “Voltage-hold perturbation & observation maximum power point tracking algorithm (VH-P&O MPPT) for improved tracking over the transient atmospheric changes,” EPE, pp. 1-10, 2011.
    [28] Z. Jianping, “Simulation Research on maximum power point tracking based on perturbation and observation,” WCICA, pp. 150-153, 2012.
    [29] F. Kazan, S. Karaki, R. A. Jabr, and M. Mansour, “Maximum power point tracking using ripple correlation and incremental conductance,” UPEC, pp. 1-6, 2012.
    [30] G. C. Hsieh, C. Y. Tsai, and H. S. Hsieh, “Photovoltaic power-increment-aided incremental-conductance maximum power point tracking using variable frequency and duty controls,” IEEE PEDG, pp. 542-549, 2012.
    [31] P. C. Sekhar and S. Mishra, “Takagi–Sugeno fuzzy-based incremental conductance algorithm for maximum power point tracking of a photovoltaic generating system,” IET Renewable Power Generation, vol. 8, no. 8, pp. 900-914, 2014.
    [32] S. T. Kok and S. Mekhilef, “Modified Incremental Conductance Algorithm for Photovoltaic System Under Partial Shading Conditions and Load Variation,” IEEE Trans. on Industrial Electronics, vol. 61, no. 10, pp. 5384-5392, 2014.
    [33] 新華電腦,「DSP從此輕鬆跑」,台科大圖書股份有限公司,民國92年10月。
    [34] K. Kamosfy, “Speeding DSP algorithm design,” IEEE Spectrum, vol. 33, no. 7, pp. 79-82, 1996.
    [35] C. W. T. McLyman, Transformer and Inductor Design Handbook, Marcel Dekker, Inc., 2004.
    [36] Magnetic Powder Core, Chang Sung Corporation, 2011.
    [37] [Online] http://en.wikipedia.org/wiki/
    [38] 周坤成,高周波的基礎與應用,文笙書局,台北,民國八十四年。
    [39] 潘天明,現代感應加熱裝置,冶金工業出版社,北京,民國八十五年。

    無法下載圖示 校內:2020-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE