簡易檢索 / 詳目顯示

研究生: 李伊凱
Li, Yi-Kai
論文名稱: 離子凝膠對聚(3-己烷噻吩)結構性質與薄膜電晶體電特性的影響研究
Ion gel effects on thin-film structural and electrical properties of poly(3-hexylthiophene)-based organic thin film transistors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 離子凝膠有機電解質閘極電晶體電化學摻雜
外文關鍵詞: ion-gel, electrolyte-gating organic thin film transistors, electrochemical doping
相關次數: 點閱:82下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用[Poly(3-hexylthiophene-2,5-diyl)(P3HT)]高分子作為電晶體之主動層,並於通道上貼附離子凝膠作為介電層,可使原本操作於大電壓的電晶體能轉變成低電壓操作。
    首先使用柱狀、孔洞及不同結晶品質之P3HT薄膜結構作為電晶體之主動層,並利用不同金屬材料作為電晶體的源極與汲極,探討將離子凝膠貼附於不同主動層結構之通道上時,元件電特性上的差異,並透過拉曼光譜儀,分析元件經電化學摻雜後,電晶體主動層的微結構變化。
    本研究利用離子凝膠所產生的大電容效應,成功的製作出能在低電壓下操作的電晶體,且經實驗中發現,當有較高結晶品質的P3HT之薄膜時,可減少離子摻雜入P3HT中,降低主動層微結構的破壞,而當主動層結構為柱狀與孔洞結構時,能利用PMMA擁有吸引離子的特性,可改變離子摻雜進入主動層的區域,展現出不同元件的電特性,增加元件可應用性。而發現當使用銀作為元件的源汲極時,會有較低的電流穩定度,主因推測銀容易與離子凝膠中的硫元素產生反應,因此當改用金作為元件電極時,能大幅改善元件穩定度。

    In this study, poly(3-hexylthiophene) (P3HT) was used as an active layer of organic thin-film transistors (OTFTs). An ion-gel film, which acts as a dielectric layer, was pasted onto P3HT to fabricate low-voltage-driven OTFTs. P3HT active layers with different microstructures were prepared. Different metals were adopted as the source and drain electrodes of OTFTs. The electrochemical doping effect of the ion-gel dielectric layer on the microstructure of various P3HT thin films and the electrical characteristics of the corresponding devices were investigated. We observed that the high crystalline quality of P3HT thin films could reduce the doping of ions and their damage to the microstructures of P3HT active layers. The addition of poly(methyl methacrylate) (PMMA) into P3HT active layers could adsorb ions. Different structures of PMMA that formed in P3HT active layers resulted in different doping sites of ions, leading to the different electrical properties of OTFTs. The devices with silver electrodes had a lower stability of output current compared with those with gold electrodes during continuous operation, which may be due to the reaction between the silver and sulfur of the ion gel.

    目錄 中文摘要 I Extended Abstract II 誌謝 IX 目錄 X 表目錄 XIV 圖目錄 XV 第一章 簡介與基礎理論 1 1-1 電解質閘極電晶體簡介 1 1-1-1 電解質閘極電晶體概論 1 1-1-2 電解質閘極電晶體操作模式與方法 2 1-1-3 電解質材料 5 1-2 有機薄膜電晶體簡介 7 1-2-1 有機薄膜電晶體概論 7 1-2-2 有機薄膜電晶體之元件結構與操作原理 8 1-2-3 有機薄膜電晶體傳輸理論與電性參數 9 1-3 研究動機 12 第二章 實驗方法與分析工具 16 2-1實驗材料 16 2-1-1 有機半導體材料 16 2-1-2 高分子修飾層材料 16 2-1-3 離子液體 17 2-1-4 有機溶劑 17 2-1-5 P型矽基板 17 2-2 元件製成 18 2-2-1 基板清洗步驟 18 2-2-2 藥品配置 18 2-2-3 旋轉塗佈分子修飾層 19 2-2-4 熱蒸鍍銀電極與電子束蒸鍍金電極 19 2-2-5 旋轉塗佈有機半導體 19 2-2-6 離子凝膠製作流程及貼附 20 2-2-7 上閘極製作 20 2-3儀器介紹 21 2-3-1 電性分析 21 2-3-2 拉曼光譜儀 21 2-3-3 原子力顯微鏡 22 2-3-4 靜電力顯微鏡 22 2-3-5 歐傑電子能譜儀 22 2-3-6吸收光譜儀 23 第三章 離子凝膠對聚(3-己烷噻吩)薄膜結構性質與電晶體電特性的影響之研究 26 3-1前言 26 3-2離子凝膠對不同結晶品質之薄膜與電晶體電性的影響 27 3-2-1元件電性分析 27 3-2-2薄膜表面結構分析 28 3-2-3拉曼光譜分析 29 3-2-4 元件輸出電流隨時間變化分析 31 3-3 離子凝膠對不同結構組成之薄膜與電晶體電性的影響 32 3-3-1 薄膜表面結構分析 32 3-3-2 元件電性與薄膜拉曼光譜分析 33 3-3-3 靜電力顯微鏡影像分析 35 3-3-4 歐傑元素分析 35 3-3-5 元件輸出電流隨時間變化分析 36 3-3-6 元件主動層結構隨時間變化分析 37 3-4 離子凝膠電容分析 39 第四章 電極材料選擇對有機薄膜電晶體電性影響研究 63 4-1 前言 63 4-2比較薄膜成長與不同電極材料經離子摻雜後之電晶體電性影響 64 4-2-1 薄膜表面結構分析 64 4-2-2 元件電性與薄膜拉曼光譜分析 65 4-2-3 元件輸出電流隨時間變化分析 66 4-3 比較柱狀與孔洞結構成長與不同電極材料經離子摻雜後之電晶體電性影響 67 4-3-1 薄膜表面結構分析 67 4-3-2 元件電性與薄膜拉曼光譜分析 68 4-3-3 元件輸出電流隨時間變化分析 70 4-4 元件恢復期探討 71 第五章 結論與未來展望 89 5-1 結論 89 5-2 未來工作 91 參考文獻 92

    [1] K. Shin, C.W. Yang, S.Y. Yang, H.Y. Jeon, C.E. Park, “Effects of
    polymer gate dielectrics roughness on pentacene field-effect transistors”, Applied Physics Letters, 88, 072109, 2006

    [2] J. Collet, O. Tharaud, A. Chapoton, D. Vuillaume, “Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films”, Applied Physics Letters, 76, 1941–1943, 2000

    [3] M.P. Walser, W.L. Kalb, T. Mathis, B. Batlogg, “Low-voltage organic transistors and inverters with ultrathin fluoropolymer gate dielectric”, Applied Physics Letters, 95, 233301, 2009

    [4] M.H. Yoon, H. Yan, A. Facchetti, T.J. Marks, “Low-Voltage Organic Field-Effect Transistors and Inverters Enabled by Ultrathin Cross-Linked Polymers as Gate Dielectrics”, Journal of the American Chemical Society, 127, 10388–10395, 2005

    [5] D. Braga, M. Ha, W. Xie, C.D. Frisbie, “Ultralow contact resistance in electrolyte-gated organic thin film transistors”, Applied Physics Letters, 97, 193311, 2010

    [6] M.S. Kang, J.H. Cho, S.H. Kim, “Electrolyte-Gating Organic Thin Film Transistors”, Large Area and Flexible Electronics, 253–274, 2015

    [7] H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, Y. Iwasa, “Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors”, Journal of the American Chemical Society, 132, 18402–18407, 2010

    [8] J.T. Friedlein, R.R. McLeod, J. Rivnay, “Device physics of organic electrochemical transistors”, Organic Electronics, 63, 398-414, 2018

    [9] K.H. Seol, S.J. Lee, K.G. Cho, K. Hong, K.H. Lee, “Highly conductive, binary ionic liquid–solvent mixture ion gels for effective switching of electrolyte-gated transistors”, Journal of Materials Chemistry, 6, 10987-10993, 2018.

    [10] S.H. Kim, K. Hong, W. Xie, K.H. Lee, S. Zhang, T.P. Lodge, C.D. Frisbie, “Electrolyte-Gated Transistors for Organic and Printed Electronics”, Advanced Materials, 25, 822–1846, 2012

    [11] J. Lee, M.J. Panzer, Y. He, T.P. Lodge, C.D. Frisbie, “Ion Gel Gated Polymer Thin-Film Transistors”, Journal of the American Chemical Society, 129, 4532–4533, 2007

    [12] E. Rietman, “Alkali metal ion-poly (ethylene oxide) complexes. II. Effect of cation on conductivity”, Solid State Ionics, 25, 41–44, 1987

    [13] T. Ueki, “Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities”, Macromolecules, 41, 3739–3749, 2008

    [14] K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, “A review of polymer electrolytes: fundamental”, Approaches and Applications Ionics, 22, 1259–1279, 2016

    [15] K. Hanabusa, H. Fukui, M. Suzuki, H. Shirai, “Specialist Gelator for Ionic Liquids”, Langmuir, 21, 10383–10390, 2005

    [16] H.M. Yang, Y.K. Kwon, S.B. Lee, S. Kim, K. Hong, K. H. Lee, “Physically Cross-Linked Homopolymer Ion Gels for High Performance Electrolyte-Gated Transistors”, ACS Applied Materials & Interfaces, 9, 8813–8818, 2017

    [17] S. Jana, A. Parthiban, C.L.L. Chai, “Transparent, flexible and highly conductive ion gels from ionic liquid compatible cyclic carbonate network”, Chemical Communications, 46, 1488, 2010

    [18] K.H. Lee, S. Zhang, T.P. Lodge, C.D. Frisbie, “Electrical Impedance of Spin-Coatable Ion Gel Films”, Journal of Physical Chemistry B, 115, 3315–3321, 2011

    [19] A.G. MacDiarmid, A.J. Epstein, “The concept of secondary doping as applied to polyaniline”, Synthetic Metals, 65, 103–116, 1994

    [20] C.D. Dimitrakopoulos, D.J. Mascaro, “Organic thin-film transistors: A review of recent advances”, IBM Journal of Research and Development, 45, 11–27, 2001

    [21] R.M. Glaeser, R.S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids Comparison of Band and Hopping Models”, The Journal of Chemical Physics, 44, 3797–3810, 1966

    [22] D.A. Neamen, “Semiconductor physics and devices basic principles 3th edition”, 2003

    [23] Ute Zschieschang, Vera Patricia Bader, “Below-one-volt organic thin-film transistors with large on/off current ratios”, Organic Electronics, 49, 179, 2017.

    [24] J.D. Yuen, A.S Dhoot, E.B. Namdas, N.E. Coates, M. Heeney, “Electrochemical Doping in Electrolyte-Gated Polymer Transistors”, Journal of the American Chemical Society, 129, 14367–14371, 2007

    [25] A. Tibaldi, L. Fillaud, G. Anquetin, M. Woytasik, S. Zrig, B. Piro, “Electrolyte-gated organic field-effect transistors (EGOFETs) as complementary tools to electrochemistry for the study of surface processes”, Electrochemistry Communications, 98, 43-46, 2018

    [26] A. Babel, S.A. Jenekhe, “Charge Carrier Mobility in Blends of Poly(9,9-dioctylfluorene) and Poly(3-hexylthiophene)”, Macromolecules, 36, 7759–7764, 2003

    [27] Patrick Reiser, “Dopant Diffusion in Sequentially Doped Poly(3-hexylthiophene) Studied by Infrared and Photoelectron Spectroscopy”, The Journal of Physical, 122, 14518-14527, 2018

    無法下載圖示 校內:2024-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE