簡易檢索 / 詳目顯示

研究生: 呂玉樹
Lu, Yu-Shu
論文名稱: 開繞組永磁同步馬達於SiC與IGBT混合共直流匯流排雙驅動系統之設計與性能分析
Analysis of Open-End Winding Permanent Magnet Synchronous Motor in SiC and IGBT Hybrid Dual-Inverter System with Common DC Bus
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 157
中文關鍵詞: 永磁同步馬達開繞組IGBT碳化矽混合式驅動器
外文關鍵詞: Permanent Magnet Synchronous Motor (PMSM), Open-End Winding (OEW), IGBT, Silicon Carbide (SiC), Hybrid System
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 永磁同步馬達(Permanent Magnet Synchronous Motor, PMSM)因具備高效率與高功率密度,廣泛應用於電動車與工業領域。然而,隨著轉速提升,反電動勢會顯著加,不僅限制了速度範圍,還提高了對直流鏈電壓的需求。為突破此限制,開繞組(Open-End Winding, OEW)雙驅動器拓撲應運而生。該結構可同時控制繞組兩端,提升電壓利用率並擴展速度範圍,同時具備更高的控制靈活性與容錯能力。結合PMSM與OEW雙驅動器的OEW-PMSM系統,融合了高性能與高可靠性優勢,逐漸成為高階電機驅動系統的重要發展方向,受到學術界與產業界的廣泛關注。然而,在雙驅動器系統中若採用絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor, IGBT),將導致驅動端功率損耗倍增,進而影響整體系統效率。為解決此問題,本文提出結合碳化矽(Silicon Carbide, SiC)與IGBT的混合雙驅動器架構,並提出一套兼顧效率與成本的向量控制策略,以降低IGBT驅動端的切換次數來抑制損耗,同時充分發揮SiC元件於高速與高頻控制的優勢,進而整體提升系統效率與經濟性。此方法在保有接近全碳化矽系統效能的同時,亦有效降低系統成本,為OEW-PMSM驅動系統提供一種兼具高性能與高成本效益的可行解決方案。

    Permanent Magnet Synchronous Motors (PMSM) are widely used in electric vehicles and industrial systems due to their high efficiency and power density. However, the increase in back electromotive force (EMF) at high speeds limits the speed range and requires higher DC bus voltage. To overcome this, the Open-End Winding (OEW) dual-inverter topology has been introduced, enabling control of both winding ends to improve voltage utilization, extend speed range, and enhance fault tolerance. The OEW-PMSM system, combining PMSMs and dual inverters, is emerging as a high-performance, reliable solution for advanced motor drives. A key challenge arises when both inverters use Insulated Gate Bipolar Transistors (IGBTs), resulting in doubled power losses and reduced efficiency. To address this, a hybrid dual-inverter architecture using both Silicon Carbide (SiC) devices and IGBTs is proposed. SiC offers low switching losses and high-speed operation but comes at a higher cost. This study presents a vector control strategy for the hybrid system, aiming to maintain high efficiency while lowering cost, achieving performance close to a full-SiC solution and offering a balanced trade-off between performance and affordability.

    摘要 I Abstract II 致謝 XXIX 目錄 XXX 表目錄 XXXIII 圖目錄 XXXIV 符號表 XXXVII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.2.1 直流鏈電壓限制突破 4 1.2.2 多階層變頻器拓樸 6 1.2.3 開繞組永磁同步馬達 8 1.3 研究動機與目的 12 1.4 論文架構 14 第二章 馬達數學模型與雙驅動器電壓向量分析 15 2.1 前言 15 2.2 開繞組永磁同步馬達數學模型 15 2.2.1 三相座標軸之馬達數學模型 15 2.2.2 座標轉換後之馬達數學模型 21 2.3 雙驅動器之電壓向量 26 2.3.1 α-β軸靜止座標之電壓向量 26 2.3.2 隔離直流電壓源與共直流電壓源之比較 28 2.4 小結 31 第三章 雙驅動控制策略設計與原理 32 3.1 前言 32 3.2 磁場導向控制 33 3.2.1 空間向量調變 33 3.2.2 磁場導向控制 39 3.2.3 無差拍電流預測控制 43 3.3 直接轉矩控制 45 3.3.1 傳統直接轉矩控制 45 3.3.2 工作週期調變直接轉矩控制 48 3.4 本文提出之混合式雙驅動直接轉矩控制法 54 3.5 小結 60 第四章 模擬驗證與性能分析 61 4.1 前言 61 4.2 開繞組馬達系統之Simulink建模流程 61 4.3 傳統Y接與開繞組雙驅動拓樸之性能比較 64 4.4 不同直接轉矩控制法之模擬分析與比較 69 4.4.1 磁鏈響應特性分析 70 4.4.2 電磁轉矩輸出性能評估 73 4.4.3 相電流諧波與品質分析 75 4.4.4 零序電流抑制效能 79 4.5 小結 81 第五章 實驗平台建置與實測結果探討 83 5.1 測試環境與設備配置 83 5.2 SiC與IGBT驅動器性能比較 86 5.2.1 功率元件規格與選型 86 5.2.2 雙脈衝測試結果比較 86 5.2.3 馬達驅動效率分析 89 5.3 傳統Y接與開繞組拓樸之性能比較 91 5.3.1 轉速極限比較 91 5.3.2 驅動器效率分析 93 5.4 三種開繞組DTC控制法之實測比較 95 5.4.1 電磁轉矩漣波分析 95 5.4.2 相電流諧波特性 96 5.4.3 零相序電流抑制效果 99 5.4.4 控制策略對驅動效率之影響 101 第六章 結論與未來展望 107 6.1 結論 107 6.2 未來展望 108 參考文獻 109

    [1] IPCC, AR6 Synthesis Report: Climate Change 2023 – Full Volume, Intergovernmental Panel on Climate Change, 2023. [Online]. Available: https://www.ipcc.ch/report/ar6/syr/
    [2] International Energy Agency (IEA), Trends in Electric Cars – Global EV Outlook 2024, [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars
    [3] 范銳. (2022). 電動車永磁同步馬達設計, [Online]. Available: http://www.khbl.net/upload/cms/kehaigushi/202208/24111157lvpz.pdf
    [4] J. Hong, H. Lee and K. Nam, "Charging Method for the Secondary Battery in Dual-Inverter Drive Systems for Electric Vehicles," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 909-921, Feb. 2015
    [5] A. Dehghani kiadehi, K. El Khamlichi Drissi and C. Pasquier, "Angular Modulation of Dual-Inverter Fed Open-End Motor for Electrical Vehicle Applications," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2980-2990, April 2016
    [6] B. A. Welchko, T. A. Lipo, T. M. Jahns and S. E. Schulz, "Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations," IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1108-1116, July 2004
    [7] H. -W. Lee and K. -B. Lee, "Open-Circuit Fault Diagnosis and Fault-Tolerant Operation of Dual Inverter for Open-End Winding Interior Permanent Magnet Synchronous Motor," in proceedings of 2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS), Busan, Korea, Republic of, 2022
    [8] J. O. Estima and A. J. Marques Cardoso, "Efficiency Analysis of Drive Train Topologies Applied to Electric/Hybrid Vehicles," IEEE Transactions on Vehicular Technology, vol. 61, no. 3, pp. 1021-1031, March 2012
    [9] T. -S. Li, Y. -H. Yang, C. -A. Cheng and Y. -M. Chen, "A Variable DC-Link Voltage Determination Method for Motor Drives with SiC MOSFETs," in proceedings of 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Suita, Japan, 2020
    [10] B. Wang, G. Localzo, G. El Murr, J. Wang, A. Griffo, C. Gerada, T. Cox, "Overall assessments of dual inverter open winding drives," in proceedings of 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d'Alene, ID, USA, 2015
    [11] A. Madan and E. Bostanci, "Comparison of Two-Level and Three-Level NPC Inverter Topologies for a PMSM Drive for Electric Vehicle Applications," in proceedings of 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Istanbul, Turkey, 2019
    [12] J. -H. Suh, Chang H. -C. and D. -S. Hyun, "A new simplified space-vector PWM method for three-level inverters," in proceedings of APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285), Dallas, TX, USA, 1999
    [13] Y. Wang, T. A. Lipo and D. Pan, "Robust operation of double-output AC machine drive," in proceedings of 8th International Conference on Power Electronics - ECCE Asia, Jeju, Korea (South), 2011
    [14] W. Hu, C. Ruan, H. Nian and D. Sun, "An Improved Modulation Technique With Minimum Switching Actions Within One PWM Cycle for Open-End Winding PMSM System With Isolated DC Bus," IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 4259-4264, May 2020
    [15] J. Wei, X. Kong, W. Tao, Z. Zhang and B. Zhou, "The Torque Ripple Optimization of Open-Winding Permanent Magnet Synchronous Motor With Direct Torque Control Strategy Over a Wide Bus Voltage Ratio Range," IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 7156-7168, June 2022
    [16] S. Lakhimsetty, N. Surulivel and V. T. Somasekhar, "Improvised SVPWM Strategies for an Enhanced Performance for a Four-Level Open-End Winding Induction Motor Drive," IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 2750-2759, April 2017
    [17] J. Ewanchuk, J. Salmon and C. Chapelsky, "A Method for Supply Voltage Boosting in an Open-Ended Induction Machine Using a Dual Inverter System With a Floating Capacitor Bridge," IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1348-1357, March 2013
    [18] T. Xu, X. Wang, D. Xiao, X. Meng, Y. Mao and Z. Wang, "A Novel Two-Mode Inverter-Based Open-Winding PMSM Drive and Its Modulation Strategies," IEEE Transactions on Power Electronics, vol. 38, no. 7, pp. 8762-8774, July 2023
    [19] Z. Dong, H. Wen, Z. Song and C. Liu, "3-D SVM for Three-Phase Open-End Winding Drives With Common DC Bus," IEEE Transactions on Power Electronics, vol. 38, no. 8, pp. 9340-9346, Aug. 2023
    [20] L. Xu and Z. Q. Zhu, "A Novel SVPWM for Open Winding Permanent Magnet Synchronous Machine With Extended Operation Range," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 1, pp. 901-914, Feb. 2023
    [21] J. -C. Hwang and H. -T. Wei, "The Current Harmonics Elimination Control Strategy for Six-Leg Three-Phase Permanent Magnet Synchronous Motor Drives," IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 3032-3040, June 2014
    [22] A. Somani, R. K. Gupta, K. K. Mohapatra and N. Mohan, "On the Causes of Circulating Currents in PWM Drives With Open-End Winding AC Machines," IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3670-3678, Sept. 2013
    [23] L. Rovere, A. Formentini, G. L. Calzo, P. Zanchetta and T. Cox, "Zero-Sequence Voltage Elimination for Dual-Fed Common DC-Link Open-End Winding PMSM High-Speed Starter–Generator—Part I: Modulation," IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7804-7812, Nov.-Dec. 2019
    [24] L. Rovere, A. Formentini, G. L. Calzo, P. Zanchetta and T. Cox, "Zero-Sequence Voltage Elimination for Dual-Fed Common DC-Link Open-End Winding PMSM High-Speed Starter-Generator—Part II: Deadtime Hysteresis Control of Zero-Sequence Current," IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7813-7821, Nov.-Dec. 2019
    [25] X. Yuan, C. Zhang and S. Zhang, "A Novel Deadbeat Predictive Current Control Scheme for OEW-PMSM Drives," IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 11990-12000, Dec. 2019
    [26] X. Lin, W. Huang, W. Jiang, Y. Zhao, D. Dong and X. Wu, "Direct Torque Control for Three-Phase Open-End Winding PMSM With Common DC Bus Based on Duty Ratio Modulation," IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 4216-4232, April 2020
    [27] J. S. Kim, S. K. Sul, "A novel voltage modulation technique of the space vector PWM," IEEE Transactions on Industry Applications, 1996
    [28] V. T. Somasekhar, S. Srinivas and K. K. Kumar, "Effect of Zero-Vector Placement in a Dual-Inverter Fed Open-End Winding Induction Motor Drive With Alternate Sub-Hexagonal Center PWM Switching Scheme," IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1584-1591, May 2008
    [29] V. T. Somasekhar, S. Srinivas and K. K. Kumar, "Effect of Zero-Vector Placement in a Dual-Inverter Fed Open-End Winding Induction-Motor Drive With a Decoupled Space-Vector PWM Strategy," IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2497-2505, June 2008
    [30] ROHM Semiconductor, SCT3040KR Product Datasheet, [Online]. Available:https://fscdn.rohm.com/en/products/databook/datasheet/discrete/sic/mosfet/sct3040kr-e.pdf
    [31] ON Semiconductor, FGY4L140T120SWD Product Datasheet, [Online]. Available:https://www.onsemi.com/download/datasheet/pdf/fgy4l140t120swd-d.pdf

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE