| 研究生: |
謝京翰 Hsieh, Jing-Hang |
|---|---|
| 論文名稱: |
基於PID控制器與切換機制之動態無線傳能系統研究 A Study On Dynamic Wireless Power Transmission System Based On PID Controller and Switching Mechanism |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 動態無線充電 、補償架構 、比例-積分-微分控制器 、相移脈波寬度調變 |
| 外文關鍵詞: | dynamic wireless charging, digital proportional-integral-derivative controller, phase shift pulse width modulation control |
| 相關次數: | 點閱:164 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究為建立一動態無線傳能系統,並搭配動態切換機制及數位控制器,使系統在發生變動負載及錯位情況下能在有限範圍內達到輸出端定電壓的目標,且在輸出端固定負載或變載下皆能安全且穩定的進行傳能。動態無線傳能系統中埋設在道路的一次側(發射端)線圈在進行動態傳能時,必須有一套穩定且可靠的機制來偵測裝置在車輛內部的二次側(接收端)線圈是否已經接近,並由系統決定是否開啟或關閉驅動訊號來執行傳能動作。而本研究中利用電路架構之特性搭配周邊電路及韌體程式撰寫,提出一套符合SAE J2954感應充電規範建議標準之耦合係數規範下的切換機制,且經由機制的動態調整,讓系統在移動及輸出端變動負載時皆能順利且安全的進行動態切換。在輸出端定電壓控制上則在閉迴路架構中加入比例(P)、積分(I)、微分(D)數位控制器,使系統能在限範圍內能提供後端系統穩定的電壓,且將切換機制及控制器實作於氣隙為20公分的動態無線傳能平台中,驗證本文所提出之設計方法之可行性。
In a dynamic wireless power transmission system, the primary-side (transmitting end) coil buried in roads, while proceeding dynamic power transmission, requires a stable and reliable mechanism for detecting the approach of the secondary-side (receiving end) coil equipped in vehicles, and the system would determine to turn on or off the driving signal for power transmission. By matching the characteristics of circuit architecture with peripheral circuits and firmware programming, a switching mechanism with the coupling factor conforming to the inductive charging standards of SAE J2954 is proposed in this study, which allows the system smoothly and securely proceeding dynamic switching during shift and output end fluctuating load through the dynamic modulation of the mechanism.
In term of the output end constant voltage control, a proportional, integral, and derivative (PID) digital controller is added in the closed-loop structure, allowing the system providing stable voltage, in limited areas, for the back-end system by modulating the driving signal of conduction angle. The switching mechanism and controller are implemented on the dynamic wireless power transmission platform with the air gap 20 cm to verify the practicability of the design proposed in thesis.
[1] “SAE Electric Vehicle Inductive Charge Coupling Recommended Practice,” SAE J-1773, Society of Automotive Engineers, Draft Document, 1995-01.
[2] J. Schneider, “SAE TIR J2954Wireless Charging of Electric and Plug-in Hybrid Vehicles,” SAE International.
[3] J. Schneider, “SAE J2954 Overview and Path Forward,” SAE International.
[4] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer System,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148–157, Feb. 2004.
[5] W. Zhou and H. Ma, “Design Considerations of Compensation Topologies in ICPT System,” in Proc. IEEE Conf. Appl. Power Electron., 2007, pp. 985–990
[6] J. Shin et al., “Design and Implementation of Shaped Magnetic-Resonance Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1179–1192, Mar. 2014.
[7] M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Estimating the Output Power of Flat Pickups in Complex IPT Systems,” in Proc. Power Electron. Spec. Conf., Rhodes, Greece, 2008, pp. 604–610.
[8] J. Sallan, J.L. Villa, A. Llombart, and J.F. Sanz, “Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge,” IEEE Transactions on Industrial Electronics , Vol. 56, No. 6, pp. 2140-2149, June 2009.
[9] J.L. Villa, A. Llombart, J.F. Sanz, and J. Sallan, “Practical Development of a 5 kW ICPT System SS Compensated with a Large Air gap,” IEEE International Symposium on Industrial Electronics, Vigo, Spain, pp. 1219-1223, June 2007.
[10] J. L. Villa, J. Sallan, J. F. S. Osorio, and A. Llombart, “High-Misalignment Tolerant Compensation Topology for ICPT Systems,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, pp. 945-951, Feb. 2012.
[11] C. T. Rim, J. Huh, S. W. Lee, W. Y. Lee, and G. H. Cho, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Transactions on Power Electronics, Vol. 26, No. 12, pp. 3666-3679, Dec. 2011.
[12] J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S.J. Jeon, and D.H. Cho, “Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, pp. 1179-1192, March 2014.
[13] S. Moon, B.C. Kim, S.Y. Cho, and C.H. Ahn, “Analysis and Design of a Wireless Power Transfer System With an Intermediate Coil for High Efficiency,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, pp. 5861-5870, Nov. 2014.
[14] S. Y. Cho, I. O. Lee, S. C. Moon, G. W. Moon ; B. C. Ki, and K. Y. Kim, “Series-Series Compensated Wireless Power Transfer at Two Different Resonant Frequencies,” IEEE ECCE Asia Downunder, Melbourne, Australia, pp. 1052-1058, Jun. 2013.
[15] I. S. Suh, and J. Kim, “Electric Vehicle On-Road Dynamic Charging System with Wireless Power Transfer Technology,” IEEE International Electric Machines & Drives Conference, Chicago, United States of America, pp. 234-240, May. 2013.
[16] S. Lee, J. Huh,C. Park, N. S. Choi, G. H. Cho, and C. T. Rim, “On-Line Electric Vehicle Using Inductive Power Transfer System,” IEEE Energy Conversion Congress and Exposition, Atlanta, United States of America, pp. 1598-1601, Sep. 2010.
[17] I. S. Suh, K. Lee, and M. Lee, “Dynamic Model and Control Algorithm of HVAC System for Dynamic Wireless Charging EV Application,” IEEE International Electric Machines & Drives Conference, Chicago, United States of America, pp. 241-246 May. 2013.
[18] M. L. G. Kissin, G. A. Covic, and J. T. Boys, ‘‘Steady-State Flat Pickup Loading Effects in Poly-Phase Inductive Power Transfer Systems,’’ IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2274–2282, May 2011.
[19] Tsong-Shing Lee, Shyh-Jier Huang, Senior Member, IEEE, Cheng-Chi Tai, Ruei-Yuan Chen, and Bei-Ren Jiang, “Design of Wireless Power Transfer for Dynamic Power Transmission with Position-Detection Mechanism.,” IEEE International Conference , pp. 976–981, .2015.
[20] Ganesh R. Nagendra, Liang Chen, Grant A. Covic, and John T. Boys, “Detection of EVs on IPT highways,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 3, pp. 584-597, Sept. 2014.
[21] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow Width Inductive Power Transfer System for Online Electrical Vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[22] Stamati, T.-E.; Bauer, P.,”On-Road Charging of Electric Vehicles,” Transportation Electrification Conference and Expo (ITEC), 2013 IEEE , vol., no., pp.1,8, 16-19 June 2013.
[23] W. Zhou and H. Ma, “Design Considerations of Compensation Topologies in ICPT System,” IEEE Annual Conference on Applied Power Electronics, California, USA, pp. 985-990, February 2007.
[24] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, “A Two-Hop Wireless Power Transfer System with an Efficiency-Enhanced Power Receiver for Motion-Free Capsule Endoscopy Inspection,” IEEE Transactions on Biomedical Engineering,Vol.59,No.11,pp. 3247-3254, November 2012.
[25] Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1801-1812, May 2009.
[26] X. Liu and S. Y. Hui, “Optimal Design of a Hybrid Winding Structure for Planar Contactless Battery Charging Platform,” IEEE Transactions on Power Electronics, Vol. 23, No. 1, pp. 455-463, January 2008.
[27] O. H. Stielau and G. A. Covic, “Design of Loosely Coupled Inductive Power Transfer Systems,” IEEE International Conference on Power System Technology, Perth, Australia, Vol. 1, pp. 85-90, December 2000.
[28] X. Zhang, S. L. Ho, and W. N. Fu,“A Hybrid Optimal Design Strategy of Wireless Magnetic-Resonant Charger for Deep Brain Stimulation Devices,” IEEE Transactions on Magnetics, Vol. 49, No. 5, pp. 2145-2148, May 2013.
[29] J. L. Villa, J. Sallan, J. F. Sanz Osorio, and A. Llombart,” High-Misalignment Tolerant Compensation Topology for ICPT Systems,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, February 2010.
[30] H. Matsumto, Y. Neba, K. Ishizaka, and R. Itoh,” Model for a Three-Phase Contactless Power Transfer System,” IEEE Transactions on Power Electronics, Vol. 26, No. 9, September 2010.
[31] A. W. Green and J. T. Boys, “10 kHz Inductively Coupled Power Transfer-Concept and Control,” IEEE Power International Conference on Electronic and Variable-Speed Drives, London, England, No. 399, pp. 694-699, October 1994.
[32] TMS320F28335 Datasheet, Texas Instruments Technology Inc., 2009.[Online] Available: http://www.farnell.com/datasheets/1719426.pdf
[33] CD40106B Datasheet, Texas Instruments Technology Inc., 2003.[Online] Available: http://www.ti.com/lit/ds/symlink/cd40106b-mil.pdf
[34] IR2110 Datasheet, Infineon Technology Inc., 2003.[Online] Available: http://www.infineon.com/dgdl/ir2110.pdf?fileId=5546d462533600a4015355c80333167e
[35] LA 55-P Datasheet, LEM USA Inc., 2008.[Online] Available: http://www.lem.com/docs/products/la%2055-p%20e.pdf
[36] JUERGEN HAHN, THOMAS EDISON, THOMAS F. EDGAR, “ A NOTE ON STABILITY ANALYSIS USING BODE PLOTS ,” The University of Texas at Austin.
[37] Cavicchi, T.J., Phase Margin Revisited: Phase-Root Locus, Bode Plots, and Phase Shifters. IEEE Trans on Education. vol 46(1). pp. 168-176, 2003.
[38] Kuo, B. C., Automatic Control Systems, 6th ed. Prentice Hall, 1991.
[39] Ogata, K., Modern Control Engineering, 5th. ed. Prentice Hall, 2009.
[40] L. Chen, G.R. Nagendra, J.T. Boys, G.A. Covic, "Double Coupled Systems for IPT Roadway Applications", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.3, no.1, pp.37-49, March 2015.
[41] V. Vlatkovic, J.A. Sabate, R.B. Ridley, F.C. Lee, and B.H.Cho, “Small-Signal Analysis of The Phase-Shifted PWM Converter,” IEEE Transactions on Power Electronics, vol. PE-7, pp.128-135, 1992.
[42] J. H. Cho, H. W. Seong, S. M. Jung, J. S. Park, G. W. Moon, and M. J. Youn, “Implementation of Digitally Controlled Phase Shift Full Bridge Converter for Server Power Supply,” in Proc. Energy Convers. Congr. Expo., 2010, pp. 802–809.
[43] E. S. Kim, T. 1. Kim, Y. B. Byun,T. G. Koo, Y. H. Kim, “High Power Full Bridge DC-DC Convertcr using Digital-to-Phasc-Shift PWM Circuit”, Power Electronics Specialists Conference (PESC), vol. I, pp.221-225, June2001.
[44] Jeong-Gyu Lim and Se-Kyo Chung, “Digital Control of Phase-Shifted Full-Bridge PWM Converter,” Journal of Power Electroncs., vol. 8, no. 3, pp. 201-209, Jun 2008.
[45] L. Corradini and D. Maksimovic, “A Digital Pulse-Width Modulator for Phase-Shift Operation of Full-Bridge Isolated DC-DC Converters,” in Proc. 25th IEEE Applied Power Electronics Conference and Exposition (APEC 2010), 2010, pp. 277–283.
[46] STEIGERWALD, R.L.: A Comparison of Half-Bridge Resonant Converter Topologies. IEEE Transactions on Power Electronics, vol. 3, no. 2, pp. 174-182, 1988.
[47] S. Shin, J. Shin, Y. Kim, S. Lee, B. Song, G. Jung and S. Jeon, "Hybrid Inverter Segmentation Control for Online Electric Vehicle," in Froc. IEEE Int. Electric Vehicle Conf., pp. 1-6, Mar. 2012
[48] Minorsky, N. (1922). “Directional Stability of Automatically Steered Bodies”, Journal of the American Society of Naval Engineering, Vol. 34, page 284.
[49] M. Sami Fadali, Antonio Visioli, Digital Control Engineering Analysis and Design, 2th ed. Academic Pr , 2012.
[50] “Designing a TMS320F280x Based Digitally Controlled DC-DC Switching Power Supply”, Texas Instruments Technology Inc. Digital Power, C2000 DSP and System Power Management, July 2005.
[51] “Designing the Digital Compensator for a UCD91xx-Based Digital Power Supply”, Texas Instruments Technology Inc. Digital Power, C2000 DSP and System Power Management, November 2007.
校內:2021-07-27公開