| 研究生: |
匡婷芬 Kuang, Ting-Fen |
|---|---|
| 論文名稱: |
利用矽化鈀降低 p型矽鍺源極/汲極接觸電阻率之探討 Reducing of contact resistivity by forming palladium silicide on p type Silicon-Germanium based S/D metal contact |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 鈦矽化物 、鈀矽化物 、快速熱退火 、蕭特基接觸 、歐姆接觸 |
| 外文關鍵詞: | Titanium silicide, Palladium silicide, Rapid Thermal Annealing, schottky contact, ohmic contact |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著現代MOSFET技術中關鍵尺寸的不斷縮小導致S / D金屬接觸電阻率上升,它可以直接影響MOSFET元件運作快與慢的性能,。因此,金屬矽化物成為MOSFET元件中的主要重要因素之一。根據元件的繼續微缩,矽化物面臨一些問題需要克服,我們需要尋找新材料,獲得低薄層電阻,熱穩定性,低溫形成矽化物,低電阻率,高濃度摻雜使源極/汲極的肖特基勢壘降低。在本論文中,選擇下一個世代材料候選者矽化鈀金探討以上特性。
首先,使用四點探針儀測量進行退火過基材單晶矽(100)上磊晶Si0.7Ge0.3(50nm),並在700℃下獲得最佳活化溫度。鈀金屬和鈦金屬在該處理過的基板上分別沉積不同厚度的5nm,10nm和15nm,在不同溫度下進行兩階段快速熱退火形成金屬矽化物,通過四點探針得到薄層電阻測量結果,發現熱穩定性在800℃〜950℃,700℃有擴散現象, 200℃~400℃活化矽化鈀熱穩定度高,500℃時也表現出外擴散現象,然後用TLM法測量所有樣品的IV曲線,檢測樣品電性能,我們得到TiSi2(20nm)在700℃退火溫度時的低電阻率為3.842E-05Ωcm2 與Pd2Si(15nm)在400℃ 退火溫度時的低電阻率5.616E-07 Ωcm2,XRD顯示了矽化物的相形成和能夠了解擴散機制,AFM分析薄膜的粗糙度以及矽化物形成聚集現象的信息,通過TEM確認形成矽化物並知道矽化物厚度。
As continuous shrinking of critical dimension in modern MOSFET technology cause the S/D metal contact resistivity getting high, it can directly affects the performance of the MOSFET device. Therefore, metal silicide become one of the main important role in MOSFET devices. According to device shrink, silicide face some problem and need to overcome, we need finding new materials, getting low sheet resistance, thermal stability,forming silicide in low temperature, low resistivity, low schottky barrier high in heavy doping source and drain. In this work, choose the next candidate source/ drain germanium based palladium silicide and detect the question above.
Firstly, use the four point probe instrument measure the annealed substrate which was insitu doped boron epi Si0.7Ge0.3 (50nm) on mono crystal Si(100),and get the best activation temperature at 700℃. palladium metal and titanium metal separately deposit with the different thickness 5nm,10nm and 15nm on this processed substrate, Do two step rapid thermal annealing with different temperature to form metals silicide, through four point probe get sheet resistance measurement result found thermal stable at 800℃~950℃, a little diffusion on 700℃ and palladium silicide activation on 200℃~400℃, also show thermal stable and out-diffusion phenomenon at 500℃, then use TLM method measure IV curve of all sample to detect the sample electrical properties, we get the low resistivity
3.842E-05Ωcm2 at 700℃ of TiSi2 (20nm) and 5.616E-07 Ωcm2 at 400℃ of Pd2Si (15nm), XRD shows the phase forming and diffusion mechanism of silicide, by AFM know the roughness of film silicide and get the information of segregation of film, by TEM confirm forming silicide and know the silicide thickness.
[1] G.E. Moore, “Lithography and the future of Moore's Law”, IEEE Solid-State Circuits Society Newsletter, 11, p.2-p.17 (2006)
[2] G.E. Moore, “Cramming more components onto integrated circuits” , IEEE Solid-State Circuits Society Newsletter, 11, p.33-p.35(1965)
[3] R.H. Dennard, F.H. Gaensslen, and H.-N. Yu, “Design of ion-implanted MOSFET's with very small physical dimensions”, IEEE Solid-State Circuits Society Newsletter, 12, p.256-p.268 (2007)
[4] G. McFarland and M. Flynn, “Limits of scaling MOSFETS”, Technical Report CSL-TR-95-62, Stanford University, (1995)
[5] Y. Taur, D.A. Buchanan, and W. Chen, “CMOS scaling into the nanometer regime”, IEEE, 85, p.486-p.504 (1997)
[6] C. Auth, “45nm high-k + metal gate strain-enhanced CMOS transistors”, IEEE Custom Integrated Circuits Conference, p.21-p.24 (2008)
[7] P. Keys, H.-J. Gossmann, K.K. Ng, and C.S. Rafferty, “Series resistance limits for 0.05μm MOSFETs”, Superlattices and Microstructures, 27, p.125-p.136 (1999)
[8] M.-C. Jeng, J.E. Chung, and P.-K. Ko, “The effects of source/drain resistance on deep submicrometer device performance”, IEEE Transactions on Electron Devices, 37, p.2408-p. 2410 (1990)
[9] S.-D. Kim, C.-M. Park, and J.C.S. Woo, “Advanced model and analysis of series resistance for CMOS scaling into nanometer regime. I. Theoretical derivation”, IEEE Transactions on Electron Devices, 49, p.457-p.466 (2002)
[10] S.-D. Kim, C.-M. Park, and J.C.S. Woo, “Advanced model and analysis of series resistance for CMOS scaling into nanometer regime. II. Theoretical derivation”, IEEE Transactions on Electron Devices, 49, p.467-p.472 (2002)
[11] K. Saraswat, “Shallow Junction”, EE 311Course Notes, Stanford University, (1998)
[12] P. J. Timans, W. Lerch, J. Niess, S. Paul, N. Acharya, and Z. Nenyei, "Challenges for Ultra-Shallow Junction Formation Technologies beyond the 90nm Node", Intl. Conf. on Adv. Thermal Processing of Semiconductors, p. 17-p.33 (2003)
[13] Y.S. Kim, Y.G. Hong, and I. Berry, “Formation of 5 nm Ultra Shallow Junction on 3D Devices Structures by Ion Energy Decoupled Plasma Doping”, 21st International Conference on Ion Implantation Technology (IIT), p.26-p.30 (2016)
[14] L. Gomez, P. Hashemi, and J.L. Hoyt, “Enhanced Hole Transport in Short-Channel Strained-SiGe p-MOSFETs”, IEEE Transactions on Electron Devices, 56, p.2644-p.2651 (2009)
[15] S. Thompson, N. Anand, and M. Armstrong, “A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 /spl mu/m/sup 2/ SRAM cell”, Digest. International Electron Devices Meeting, p.8-p.11 (2003)
[16] Y. Kamakura, and K. Taniguchi, “Performance Enhancement of pMOSFETs Depending on Strain, Channel Direction, and Material”, International Conference On Simulation of Semiconductor Processes and Devices, p.1-p.3 (2005)
[17] H.-J. Huang, K.-M. Chen, and C.-Y. Chang, “Reduction of source/drain series resistance and its impact on device performance for PMOS transistors with raised Si/sub 1-x/Ge”, IEEE Electron Device Letters , 21(2000)
[18] M. Arienzo, S.S. Iyer, B.S. Meyerson, G.L. Patton, and J.M.C. Stork, “SiGe alloys: growth, properties and applications”, Applied Surface Science, 48-49, p.377-p.386 (1990)
[19] G. L. Wang, M. Moeen, A. Abedin, M. Kolahdouz, J. Luo, C. L. Qin, H. L. Zhu, J. Yan, H. Z. Yin, J. F. Li, C. Zhao, and H. H. Radamson, “Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)”, Journal of Applied Physics, 114, p.22-p.26 (2013)
[20] S. Raghunathana, T. Krishnamohanb, and K.C. Saraswat, “Novel SiGe Source/Drain for Reduced Parasitic Resistance in Ge NMOS”, ECS Transactons, 33, p.871-p.876 (2010)
[21] H. A. Elgomati, B.Y. Majlis, and F. Salehuddin, “Cobalt silicide and titanium silicide effects on nano devices”, IEEE Regional Symposium on Micro and Nano Electronics, 28-30(2011)
[22] C.M. Osburn, J.Y. Tsai, and J. sun, “Metal Silicides: Active Elements of ULSI Contacts”, Journals of Electronic Materials, 25 (1996)
[23] K.V. Rao, C.-N. Ni, and F.A. Khaja, “NMOS contact engineering for CMOS scaling”, 15th International Workshop on Junction Technology (IWJT), 11-12 (2016)
[24] S.-L. Zhang, and M. Östling, “Metal Silicides in CMOS Technology: Past, Present, and Future Trends” Solid State and Materials Sciences, 28, p.1-p.129 (2003)
[25] T. Mochizuki, T. Tsujimaru, M. Kashiwagi, and Y. Nishi, “Film properties of MoSi2 and their application to self-aligned MoSi2 gate MOSFET”, IEEE Transactions on Electron Devices, p-1431-p.1435 (1980).
[26] M.Y. Tsai, F.M. d’Heurle, C.S. Petersson, and R.W. Johnson, “Properties of WSi2 films on poly-Si”, Journal of Apply Physic. 52, p-5350 (1981).
[27] A.K.Sinha, W.S.Linderberger, D.B.Fraser, S.P.Murarka, and E.N.Fuls, “MOS compatibility of high conductivity TaSi2/N+ poly-Si gates”, IEEE Transactions on Electron Devices, 27, p-1425-p.1430 (1980).
[28] D.B. Scott , R.A. Chapman, and C.-C. Wei, “Titanium Disilicide Cont t Resistivity and Its Impact on 1-pm CMOS Circuit Performance”, IEEE Electron Devices Society, 34,
p.562-p.574 (1987)
[29] J.B. Lasky, J.S. Nakos, and O.J. Cain, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2”, IEEE Electron Devices Society, 38, p.262-p.269 (1991)
[30] K. Wieczorek, M. Horstmann, H.-J. Engelmann, K. Dittmar, W. Blum, A. Sultan, P. Besser, A. Frenkel, “Integration Challenges For Advanced Salicide Processes And Their Impact On CMOS Device Performance”, Materials Research Society, 611 (2000)
[31] K. Ohuchi, K. Adachi, A. Hokazono, and Y. Toyoshima, “Source/Drain Engineering for
Sub 100-nm Technology Node”, IEEE, p.22-p.27 (2002)
[32] S.K. Sadrnezhaad, N. Yasavol, M. Ganjali and S. Sanjabi, “Property change during nanosecond pulse laser annealing of amorphous NiTi thin film”, Indian Academy of Sciences, 35, p.357-p.364 (2012)
[33] S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium”, American Vacuum Society, 24, p.474 (2006)
[34] O.C.-Pluchery, B. Chenevier, I. Matko, J. P. Sénateur, and F. L. Via, “Investigations of transient phase formation in Ti/Si thin film reaction”, American Vacuum Society, 96, p.361 (2004)
[35] R. W. Mann, and L. A. Clevenger, “The C49 to C54 Phase Transformation in TiSi2 Thin Films”, Journal of The Electrochemical Society, 141, p.1347-p.1350 (1994)
[36] H. Yu, M. Schaekers, T. Schram, “Low-Resistance Titanium Contacts and Thermally Unstable Nickel Germanide Contacts on p-Type Germanium”, IEEE Electron Devices Society, 37 (2016)
[37] H. Iwaia,T. Ohgurob, S.-i. Ohmia, “NiSi salicide technology for scaled CMOS”,
Microelectronic Engineering, 60, p.157-p.169 (2002)
[38] T. Ohguro, S. Nakamura, H. Harakawa, E. Morifuji, T. Yoshitomi, T. Morimoto, H.S. Momose, Y. Katsumata, and H. Iwai, “Salicide technology for advanced CMOS devices”, Semicon Korea, 97 (1997)
[39] J.P. Toinin, A. Portavoce, M. Texier , M. Bertogliob, and K. Hoummada, “First stage of Pd/Ge reaction: Mixing effects and dominant diffusion species ”, Microelectronic Engineering,167, p.52-p.57 (2016)
[40] H.Tanaka, T. Isogai, T. Goto, A. Teramoto, S. Sugawa, and T. Ohmi, “Low Contact Resistivity with Low Silicide/pþ-Silicon Schottky Barrier for High-Performance p-Channel Metal–Oxide–Silicon Field Effect Transistors”, Japanese Journal of Applied Physics, 49 (2010)
[41] L.C. Wang, P.H. Hao, and B.J. Wu, “Low-temperature-processed (150–175 °C) Ge/Pd-based Ohmic contacts (ρc∼1×10-6 Ωcm2) to n-GaAs”, American Institute of Physics, 67, p.509 (1995)
[42] C.M. Comrie and J.M. Egan, “Diffusion of silicon in Pd2Si during silicide formation”, Journal of Apply Physics, 64, p.1173 (1988)
[43] D. A. Neamen (2012). Semiconductor physics and devices (fourth edition): Mc Graw Hill
[44] C.Y. Chang, and Y.K. Fang, “SPECIFIC CONTACT RESISTANCE OF METAL-SEMICONDUCTOR BARRIERS”, Solid-State Electronics, 14, p.541-p.550 (1971)
[45] A.Y.C.Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers”, Solid-State Electronics, 13, p.239-p.247 (1970)
[46] B. Schwartz (1969). Ohmic Contacts to Semiconductors Electronics Division. the Electrochemical Society's 134th national meeting, Montreal.
[47] K. Barmak, K. Coffey, “Metallic films for electronic, optical and magnetic application”, Woodhead Publishing, p. 656 (2014)
[48] 許樹恩,吳泰伯X(1996). 光繞射原理與材料結構分析. 中國材料科學學會.
[49] A. Shimamoto, K. Yamashita, H. Inoue, S.-mo. Yang, M. Iwata, and N. Ike, “A nondestructive evaluation method”, Pressure Vessel Technology, pp. 7 (2013)
[50] T. Abbas, and L. Slewa, “Transmission line method (TLM) measurement of (metal/ZnS) contact resistance”, Nanoelectronics and Materials, p.111-p.120 (2015)
[51] 林昆霖, “肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡”,nano communication, 20 (2013)
[52] 莊達人 (2002)。 VLSI 製造技術(第二版),台北:高立有限公司。
[53] Särhammar, and Erik, “Sputtering and Characterization of Complex Multi-element Coatings”, Acta Universitatis Upsaliensis, p.74 (2014)
[54] H. Yu, M. Schaekers, A. Hikavyy, “Ultralow-resistivity CMOS contact scheme with pre-contact amorphization plus Ti (germano-)silicidation”, IEEE Symposium on VLSI Technology (2016)
[55] H. Yu, M. Schaekers, S. Demuynck, “Process options to enable (sub-)1e-9 Ohm.cm2 contact resistivity on Si devices”, IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC) (2016)
[56] H. Yu, M. Schaekers, A. Peter, “Titanium Silicide on Si:P With Precontact Amorphization Implantation Treatment: Contact Resistivity Approaching 10-9 Ohm-cm2”, IEEE Transactions on Electron Devices (2016)