| 研究生: |
廖一鴻 Liao, Yi-Hong |
|---|---|
| 論文名稱: |
介電陶瓷材料(Mg1-xCox)2(Ti0.95Sn0.05)O4之微波介電特性改善與應用 Improvement of Microwave Dielectric Material (Mg1-xCox)2(Ti0.95Sn0.05)O4 and Application for Wireless Communication |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 介電陶瓷 、濾波器 |
| 外文關鍵詞: | Microwave dielectric ceramics, Bandpass Filter |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文首先探討(Mg1-xCox)2(Ti0.95Sn0.05)O4(x = 0.01~0.09)之微波介電特性,由實驗得知(Mg0.95Co0.05)2(Ti0.95Sn0.05)O4在燒結溫度1350℃持溫4小時擁有最佳微波介電特性:ε_r~14.70、Q×f~330,134 GHz(at 12.08 GHz)、τ_f~-48.18 ppm/℃。為求τ_f~0的要求,添加具有正值共振頻率溫度飄移係數的材料Ca0.8Sr0.2TiO3(τ_f~+991 ppm/℃)、Ca0.8Sm0.4/3TiO3(τ_f~+400 ppm/℃)、Ca0.61Nd0.8/3TiO3(τ_f~+270 ppm/℃)。由實驗得知0.48(Mg0.95Co0.05)2(Ti0.95Sn0.05)O4-0.52 Ca0.61Nd0.8/3TiO3在燒結溫度1325℃時持溫4小時擁有最佳微波特性:ε_r~28.58、Q×f~208027 GHz(at 8.52 GHz)、τ_f~-4.38ppm/℃。
此外,本論文以FR-4、Al2O3及自製基板0.48(Mg0.95Co0.05)2(Ti0.95Sn0.05)O4-0.52 Ca0.61Nd0.8/3TiO3設計及製作一操作在2.4 GHz的微帶線帶通濾波器。最後量測其頻率響應,由量測結果得到,利用高介電系數及低損耗的材料做為電路基板時,能達到縮小面積以及具有更好的濾波特性。
The microwave dielectric properties and the microstructures of (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x = 0.01~0.09) by the conventional solid-state route were prepared.A fine combination of microwave dielectric properties (ε_r ~ 14.7, Q × f ~ 330,000 at 12.08 GHz, τ_f ~ -48.18 ppm/℃) was achieved for (Mg0.95Co0.05)2(Ti0.95Sn0.05)O4 ceramics sintered at 1350℃ for 4 h. In order to adjust their negative τ_f, Ca0.8Sr0.2TiO3, Ca0.8Sm0.4/3TiO3, Ca0.61Nd0.8/3TiO3 which have positive τ_f had been add. Then, we designed and fabricated a bandpass filter on FR4、Al2O3、0.48(Mg0.95Co0.05)2(Ti0.95Sn0.05)O4 -0.52(Ca0.61Nd0.8/3)TiO3 substrates. According to the results of measurements, the frequency response of the filter was improved by using low-loss dielectric ceramics as the substrate.
參考文獻
[1] H. K. Shin, H. Shin, S. Y. Cho, and K. S. Hong, "Phase Evolution and Dielectric Properties of MgTiO3–CaTiO3‐Based Ceramic Sintered with Lithium Borosilicate Glass for Application to Low Temperature Co‐Fired Ceramics," Journal of the American Ceramic Society, vol. 88, pp. 2461-2465, 2005.
[2] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, "High‐Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4," Journal of the American Ceramic Society, vol. 89, pp. 3441-3445, 2006.
[3] C.-L. Huang and J.-Y. Chen, "High-Q Microwave Dielectrics in the (Mg1-xCox)2TiO4 Ceramics," Journal of American Ceramic Society, vol. 92, pp. 379–383, 2009.
[4] P. Wise, I. Reaney, W. Lee, T. Price, D. Iddles, and D. Cannell, "Structure–microwave property relations in (Sr x Ca(1− x) )n+ 1 Ti n O 3n+ 1," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, 2001.
[5] B.-J. Li, J.-Y. Chen, G.-S. Huang, C.-Y. Jiang, and C.-L. Huang, "Dielectric properties of B2O3-doped 0.92(Mg0.95Co0.05)2TiO4–0.08(Ca0.8Sr0.2)TiO3 ceramics for microwave applications," Journal of Alloys and Compounds, vol. 505, pp. 291-296, 8/27/ 2010.
[6] C. L. Huang and J. Y. Chen, "Low‐Loss Microwave Dielectrics Using Mg2 (Ti1− xSnx) O4 (x= 0.01–0.09) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 2237-2241, 2009.
[7] 魏炯權, 電子材料工程: 全華, 2001.
[8] 郭展綱, "燒結促進劑對 0.9 CaWO4-0.1 Mg2SiO4 介電陶瓷之影響與應用," 成功大學電機工程學系學位論文, pp. 1-76, 2004.
[9] 陳皇鈞, "陶瓷材料概論," 曉園出版社, 第十八章, vol. 76, 1987.
[10] W. A. Deer, R. A. Howie, and J. Zussman, An introduction to the rock-forming minerals vol. 2: Longman Scientific & Technical Hong Kong, 1992.
[11] C.-L. Huang and S.-S. Liu, "Dielectric characteristics of the (1-x)Mg2TiO4–xSrTiO3 ceramic system at microwave frequencies," Journal of Alloys and Compounds, vol. 471, pp. L9-L12, 3/5/ 2009.
[12] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon, et al., "Microwave dielectric characteristics of ilmenite-type titanates with high Q values," Japanese journal of applied physics, vol. 33, pp. 5466-5470, 1994.
[13] 吳朗, 電工材料: 滄海書局, 1998.
[14] 余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
[15] F. Lenel, "Sintering in the Presence of a Liquid Phase," AIME TRANS, vol. 15, pp. 1-19, 1948.
[16] V. N. Eremenko, Y. V. Naidich, and I. A. Lavrinenko, "LIQUID-PHASE SINTERING," 19701970.
[17] J. P. Schaffer, A. Saxena, S. D. Antolovich, T. Sanders, and S. B. Warner, The science and design of engineering materials: Irwin Chicago, 1995.
[18] 肖定全, 陶瓷材料: 新文京開發出版有限公司, 2003.
[19] W. F. Smith, 材料科學與工程: 高立出版, 1994.
[20] J. W. Cahn and R. Heady, "Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles," Journal of the American Ceramic Society, vol. 53, pp. 406-409, 1970.
[21] W. J. Huppmann and G.Petzow, "The Elementary Mechanisms of Liquid Sintering vol. Sintering Processes: Plenum Press," 1979.
[22] R. M. German, Liquid phase sintering: Springer, 1985.
[23] J. Jean and C. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of materials science, vol. 24, pp. 500-504, 1989.
[24] R. Richtmyer, "Dielectric Resonators," Journal of Applied Physics, vol. 10, pp. 391-398, 1939.
[25] S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 218-227, 1968.
[26] H. O'bryan, J. Thomson, and J. Plourde, "A New BaO‐TiO2 Compound with Temperature‐Stable High Permittivity and Low Microwave Loss," Journal of the American Ceramic Society, vol. 57, pp. 450-453, 1974.
[27] T. J. Kim, H. Y. Lee, and J.-J. Kim, "Microwave Dielectric Properties of (Ba, Sr) O-Sm2O3-TiO2 Ceramics," Ferroelectrics, vol. 333, pp. 259-264, 2006.
[28] D. Pozar, "Microwave engineering," 1998.
[29] D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE transactions on Microwave Theory and Techniques, vol. 32, pp. 1609-1616, 1984.
[30] D. Kajfez, "Basic principles give understanding of dielectric waveguides and resonators'," Microwave System News, vol. 13, pp. 152-161, 1983.
[31] D. Kajfez and P. Guillon, "Dielectric resonators," ed: Artech House (Dedham, MA), 1986.
[32] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits vol. 90: McGraw-Hill New York, 1990.
[33] J.-S. HONG, "Microstrip Filters for RF/Microwave Applications," 2001.
[34] G. Kompa, Practical microstrip design and applications: Artech House, 2005.
[35] 張盛富 and 戴明鳳, 無線通信之射頻被動電路設計 vol. 87: 全華科技, 2003.
[36] K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines vol. 2: Artech house Boston, 1996.
[37] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications vol. 167: John Wiley & Sons, 2004.
[38] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 342-350, 1968.
[39] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory Techniques, vol. 28, pp. 513-522, 1980.
[40] G. L. Matthaei, E. M. T. Jones, and L. Young, "Microwave filters, impedance-matching networks, and coupling structures," 1980.
[41] M. Makimoto and S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 1413-1417, 1980.
[42] C.-M. Tsai, S.-Y. Lee, and C.-C. Tsai, "Performance of a planar filter using a 0 feed structure," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 2362-2367, 2002.
[43] M. Petrova, G. Mikirticheva, A. Novikova, and V. Popova, "Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4," Journal of materials research, vol. 12, pp. 2584-2588, 1997.
[44] B. Chuang, "Cell parameter windows version 2.7," ed, 2004.
[45] K. H. Yoon, W. S. Kim, and E. S. Kim, "Dependence of the octahedral bond valence on microwave dielectric properties of (Ca 1− x Sm 2x/3)TiO 3 ceramics," Materials Science and Engineering: B, vol. 99, pp. 112-115, 2003.
[46] M. Yoshida, N. Hara, T. Takada, and A. Seki, "Structure and Dielectric Properties of (Ca1-xNd2x/3) TiO3," Japanese Journal of Applied Physics, vol. 36, pp. 6818-6823, 1997.
[47] N. Thammawongsa, R. Phromloungsri, K. Somsuk, and P. Arunvipas, "Harmonic Suppression Improvement of Microstrip Open Loop Ring Resonator Bandpass Filter," Procedia Engineering, vol. 8, pp. 19-24, 2011.