簡易檢索 / 詳目顯示

研究生: 蔡奇霖
Tsai, Chi-Lin
論文名稱: 軟性微型寬頻天線設計
Flexible Compact Wideband Antenna Design
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 69
中文關鍵詞: 植入式天線寬頻軟性電路板
外文關鍵詞: implantable antenna, wideband, flexible substrate
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一新型眼形超寬頻天線設計與一款應用於軟性電路板的寬頻帶植入式天線設計;其眼形超寬頻天線設計主要包含一彎曲的眼型輻射體與修改型的U型接地面,可使天線尺寸縮小化至0.027 .,天線阻抗頻帶包含1.2~4.5 GHz約為 142%。眼形超寬頻天線的寬頻帶設計概念則被延伸至所提出軟性植入式天線,所提出的植入式軟性天線具備一多彎折的單極輻射體以及一修改U型接地面,此兩設計可使所提出的植入式天線具有雙頻模態的特性,並整合為阻抗寬頻帶約為67 %。所提出植入式天線在現有植入式天線文獻中,可達到最寬的阻抗頻寬與最小天線尺寸約為80 mm3。所提出軟性植入式天線整合印製於軟性電路板上,適用於多變可動的生醫植入環境並具有良好的重現性,所提出軟性植入式天線的近場電場經設計後具有良好的電場耦合分布,可避免高峰值的生物吸收率並降低生物吸收率至161 W/kg。

    As the fast progress of social development, health care has attracted increasing attention in contemporary societies thus boosted the need for healthcare-related medical knowledge and engineering technologies. Implanted antenna is an indispensable and important component for wireless transceiver for implantable sensing systems or assistive human-organ monitoring devices. In this dissertation, an ultrawideband eye-shaped of the novel shrinking technology antenna design and a wideband low-SAR and compact implantable antenna design are proposed. The eye-shaped bending monopole radiator and the modified U-shaped ground plane are designed to increase the input impedance and decrease the lower frequency band under a limited antenna size. The operating band (1.2~4.5 GHz) can reach a fractional bandwidth of as high as 142%. The overall dimension, including the ground area, can be shrunk to 0.027 . The group delay is nearly constant to ensure the minimal distortion and dispersion. From the measurement, the antenna radiation pattern is close to omnidirectional and is suitable for general applications. The proposed antenna structure of the implantable antenna is printed on different kind of substrate material, specifically, a thin flexible substrate, in motional implantable human body application. And this dissertation presents an innovative wideband implantable antenna design operated at Med-Radio band on the flexible substrate. The smallest size and the highest bandwidth are achieved to 80 mm3 and 67% compared with the previous literature of the implantable antenna design. The bending monopole radiator and the C-shaped ground planar design excite the dual bands to merge the impedance wideband. The maximal peak value of the average specific absorption rate (SAR) is approximately 161 W/kg when the incident power is 1 W. In addition, the maximal incident power of the proposed antenna is approximately 10 mW.

    摘要 I ABSTRACT II CONTENT V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Foreword 1 1.2 Research Objective and Motivation 2 1.3 Overview of the Literature 4 1.3.1 Constraints of Implantable Antennas 4 1.3.2 Design Specifications of Implantable Antennas 6 1.3.3 Review of Wideband Antenna Technologies 9 1.3.4 Review of Implantable Antenna Technologies 12 1.4 Organization of Chapters 16 CHAPTER 2 NOVEL COMPACT EYE-SHAPED UWB ANTENNA 19 2.1 Introduction 19 2.2 Antenna Design 19 2.2.1 Antenna Structure 19 2.2.2 Reference Antenna Design 21 2.2.3 Low-frequency Impedance Matching 22 2.2.4 High-frequency Impedance Matching 22 2.3 Antenna Phase and Response 25 2.4 Antenna Pattern and Radiation 26 2.5 Conclusion 27 CHAPTER 3 IMPLANTABLE WIDEBAND LOW-SAR ANTENNA 30 3.1 Introduction 30 3.2 Implantable Antenna Design 30 3.2.1 Antenna Specification 30 3.2.2 Antenna Structure 31 3.2.3 Estimating the Effective Dielectric Constant 32 3.3 Results 36 3.3.1 Current Distribution 36 3.3.2 Extending Ground Strip 37 3.3.3 Coupling Feeding Pad 39 3.3.4 Variation of the Dielectric Constant 40 3.3.5 Specific Absorption Rate (SAR) 42 3.3.6 Measurement Setup 43 3.3.7 Gain and Pattern 45 3.4 Conclusion 45 CHAPTER 4 IMPLANTABLE ANTENNA ON THIN FLEXIBLE SUBSTRATE 49 4.1 Introduction 49 4.2 Flexible Substrate Process Technology and Application 49 4.3 Manufacturing Process 52 4.4 Estimating the Effective Dielectric Constant 54 4.5 Results 56 4.6 Conclusion 62 CHAPTER 5 CONCLUSION AND FUTURE WORK 63 5.1 Conclusion 63 5.2 Future Work 64 REFERENCE 65

    [1] Available: http://www.itis.org.tw/pubinfo-detail-free.screen?f=&pubid=52513283
    [2] Available: http://www.fcc.gov/encyclopedia/medical-device-radiocommunications-
    service-medradio
    [3] F. Merli, L. Bolomey, J. F. Zürcher, G. Corradini, E. Meurville, and A. K. Skrivervik “A Simple Ultrawideband Planar Rectangular Printed Antenna with Band Dispensation,” IEEE Trans. Antennas Propagat., vol. 59, no. 10, pp. 3544–3555, Oct. 2011.
    [4] A. Barraud, “Molecular selective interface for an implantable glucose sensor based on the viscosity variation of a sensitive fluid containing Dextran and Concanavalin A,” Ph.D. dissertation, EPFL, Lausanne, 2008.
    [5] T. Houzen, M. Takahashi, K. Saito, and K. Ito, “Implanted planar inverted F-antenna for cardiac pacemaker system,” in Int. Antenna Technol. Workshop: Small Antennas Novel Metamater., pp. 346–349, Mar. 2008.
    [6] R. Watanabe1, K. Saito, S. Watanabe2, M. Takahashi1, and K. Ito, “SAR Evaluations of Mobile Phone Close to a Pacemaker Implanted in Human Body,” Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 3839–3842, Sep. 2010.
    [7] A. J. Johansson, Wireless Communication with Medical Implants: Antennas and Propagation, Ph. D Thesis, Lund University, Sweden, 2004.
    [8] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a Dual-band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 1001–1008, Apr. 2008.
    [9] A. Kiourti, M. Christopoulou, and K. S. Nikita “Performance of a Novel Miniature Antenna Implanted in the Human Head for Wireless Biotelemetry,” In: 2011 IEEE International Symposium on Antennas and Propagation (2011), pp. 392–395, 2011.
    [10] P. D. Bradley, “An Ultra-Low Power High Performance Medical Implant Communication System Transceiver for Implantable Devices,” in Proc. IEEE Biomedical Circuits and Systems Conf., 2006, pp.158–162.
    [11] F. Merli, L. Bolomey, J. F. Zürcher, G. Corradini, E. Meurville, and A. K. Skrivervik “A Simple Ultrawideband Planar Rectangular Printed Antenna with Band Dispensation,” IEEE Trans. Antennas Propagat., vol. 59, no. 10, pp. 3544–3555, Oct. 2011.
    [12] Available: http://www.fcc.gov/encyclopedia/specific-absorption-rate-sar-cellular-
    telephones
    [13] IEEE, "Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz," Standard C.95.1-2005.
    [14] IEEE, "Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz," ed, Standard C.95.1-1999.
    [15] ERC RECOMMENDATION 70-03 (Troms 1997 and subsequent amendments), Relating to the use of short-range devices (SRD), Recommendation adopted by the Frequency Management, Regulatory Affairs and Spectrum Engineering Working Groups, Version of 22, Aug, 2011.
    [16] H. Rmili, L. Aberbour, C. Craeye, "On the Radiation Resistance of a Planar Monopole Antenna with Reduced Groundplane," IEEE Antenna Wireless Propag. Lett., vol.9, no., pp.732-736, 2010.
    [17] C. W. Ling and S. J. Chung, “A Simple Printed Ultrawideband Antenna with a Quasi-transmission Line Section,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3333–3336, Oct. 2009.
    [18] K. G. Thomas and M. Sreenivasan, “A Simple Ultrawideband Planar Rectangular Printed Antenna with Band Dispensation,” IEEE Trans. Antennas Propag., vol. 58, no. 1, pp. 27–34, Jan. 2010.
    [19] Z. N. Chen, T. S. P. See, and X. Qing, “Small Printed Ultrawideband Antenna with Reduced Ground Plane Effect,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 383–388, Feb. 2007.
    [20] M. Ojaroudi, S. Yazdanifard, N. Ojaroudi, and M. N. Moghaddasi,“Small Square Monopole Antenna with Enhanced Bandwidth by using Inverted T-shaped Slot and Conductor-backed Plane,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 383–388, Feb. 2011.
    [21] K. S. Ryu and A. A. Kishk, “UWB Dielectric Resonator Antenna Having Consistent Omnidirectional Pattern and Low Cross-polarization Characteristics,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp.1403–1408, Apr. 2011.
    [22] J. Y. Sze and J. Y. Shiu, “Design of Band-notched Ultra-wideband Square Aperture Antenna with a Hat-shaped Back-patch,” IEEE Trans. Antennas Propag., vol. 56, no. 10, pp. 3311–3314, Oct. 2008.
    [23] S. Cheng, P. Hallbjörner, and A. Rydberg, “Printed Slot Planar Inverted Cone Antenna for Ultra-wideband Applications,” IEEE Antenna Wireless Propag. Lett., vol. 7, pp. 18–21, 2008.
    [24] Y.-C. Lin and K.-J. Hung, “Compact Ultra-wideband Rectangular Aperture Antenna and Band-notched Designs,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3075–3081, Nov. 2006.
    [25] K. Y. Yazdandoost and R. Kohno, “Ultra Wideband L-loop Antenna,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sep. 2005, pp. 201–205.
    [26] R. K. Joshi and A. R. Harish, “Printed Wideband Variable Strip Width Loop Antenna,” in Proc. IEEE AP-S Int. Symp., Jun. 2007, pp. 4793–4796.
    [27] H. Nazl, E. Bıçak, B. Türetken, and M. Sezgin, “An Improved Design of Planar Elliptical Dipole Antenna for UWB Applications,” IEEE Antenna Wireless Propag. Lett., vol. 9, pp. 264–267, 2010.
    [28] J. P. Zhang, Y. S. Xu, andW. D.Wang, “Microstrip-fed Semi-elliptical Dipole Antennas for Ultrawideband Communications,” IEEE Trans. Antennas Propag., vol. 56, no. 1, pp. 241–244, Jan. 2008.
    [29] H. Oraizi and S. Hedayati, “Miniaturized UWB Monopole Microstrip Antenna Design by the Combination of Giusepe Peano and Sierpinski Carpet Fractals,” IEEE Antenna Wireless Propag. Lett., vol. 10, pp. 67–70, 2011.
    [30] D. Panescu, “Emerging technologies [wireless communication systems for implantable medical devices],” IEEE Eng. Med. Biol. Mag., vol. 27, no. 2, pp. 96–101, Mar. 2008.
    [31] A. Kiourti, K. A. Psathas, and K. S. Nikita, “Implantable and ingestible medical devices with wireless telemetry functionalities,” Bioelectromagnetics, 2013
    [32] A. Kiourti and K. S. Nikita, “A review on implantable patch antennas for biomedical telemetry: Challenges and solutions,” IEEE Antennas Propag. Mag., vol. 54, no. 3, pp. 210–228, Jun. 2012.
    [33] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable antenna and development of skin mimicing gels for continuous glucose monitoring,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 1008–1008, Apr. 2008.
    [34] W. Huang and A. A. Kishk, “Embedded spiral microstrip implantable antenna,” Int. J. Antennas Propag., vol. 2011, p. 6, 2011.
    [35] M. Asili, R. Green, S. Seran, E. Topsakal, “A small implantable antenna for MedRadio and ISM bands, ” IEEE Antenna Wireless Propag. Lett., 2012, 11, pp. 1683–1685
    [36] A. Kiourti and K. S. Nikita, "Accelerated Design of Optimized Implantable Antennas for Medical Telemetry," IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 1655-1658, 2012.
    [37] Z. Duan, Y.X. Guo, R.F. Xue, M. Je, and D.L. Kwong, “Differentially-fed dual-band implantable antenna for biomedical applications,” IEEE Trans. Antennas and Propagat., vol. 60, no.12, pp. 5587-5595, Dec 2012.
    [38] W. C. Liu, F. M. Yeh, and M. Ghavami, “Miniaturized implantable broadband antenna for biotelemetry communication,” Microwave Opt Technol Lett., vol. 50, pp. 2407–2409, 2008.
    [39] C. M. Lee, T. C. Yo, C.-H. Luo, C. H. Tu, and T. Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical devices,” Electron Lett., vol. 43, pp. 660–662, 2007.
    [40] F.-J. Huang, C.-M. Lee, C.-L. Chang, L.-K. Chen, T.-C. Yo, and C.-H. Luo, “Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication,” IEEE Trans. Antennas and Propagat., vol. 59, no. 7, pp. 2646–2653, Jul. 2011.
    [41] C. Liu, Y. X. Guo, and S. Xiao, “Compact Dual-Band Antenna for Implantable Devices,” IEEE Antenna Wireless Propag. Lett., vol. 11, pp. 1508-1511, 2012.
    [42] L. J. Xu, Y. X. Guo and W. Wu, “Dual-Band Implantable Antenna With Open-End Slots on Ground,” IEEE Antenna Wireless Propag. Lett., vol. 11, pp. 1564-1567, 2012.
    [43] C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry,” Microwave Opt Technol Lett., vol. 51, pp. 749–752, 2009.
    [44] W. C. Liu, S. H. Chen, and C. M. Wu, “Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices,” Microwave Opt Technol Lett., vol. 51, no. 3, pp. 755–757, 2009.
    [45] C. Liu, Y. X. Guo, and S. Xiao, “A Hybrid Patch/Slot Antenna for Implantable Devices,” IEEE Antennas and wireless Propag. Lett., vol. 11, pp. 1646-1649, 2012.
    [46] L. J. Xu, Y. X. Guo, and W. Wu, “Miniaturised slot antenna for biomedical applications,” Electron. Lett., 49, pp. 1060–1061, 2013
    [47] T. F. Chien, C.-M. Cheng, H.-C. Yang, J.-W. Jiang, and C.-H. Luo,“Development of nonsuperstrate implantable low-profile CPW-fed ceramic antennas,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 599–602, 2010.
    [48] 金進興, 軟性電路板材料全書, 台灣電路板協會, 2007

    無法下載圖示 校內:2019-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE