| 研究生: |
張正道 Chang, Jeng-Dau |
|---|---|
| 論文名稱: |
十位元350MHz電流導向數位類比轉換器 10-bit 350-MSample/s Current-Steering Digital-to-Analog Converter |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 數位類比轉換器 、電流導向 |
| 外文關鍵詞: | DAC, Current-Steering |
| 相關次數: | 點閱:70 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們利用標準數位CMOS製程去探討、實現一個電流導向350 MHz數位類比轉換器。將數位類比轉換器的輸入設計為六個最大位元轉換成溫度碼、四個最小位元使用二進位碼,並選擇適當的電流源電晶體面積去克服因製程變動所造成之元件不匹配的問題。在電流單元的設計上,我們採用疊加開關的架構去提升數位類比轉換器性能,譬如INL和SNDR的特性。此外也設計一個高速且具高切換點的切換開關去減低在訊號切換過程中所造成的瞬時脈衝的錯誤。
模擬的結果顯示出INL小於±0.2 LSB而DNL在±0.1 LSB之間,輸入頻率從直流到Nyquist頻率的SNDR都能大於60 dB,在350 MHz取樣頻率而訊號頻率接近Nyquist頻率且使用單一電源時,功率消耗為36.2 mW。這個數位類比轉換器採用TSMC 1P5M 0.25 μm CMOS製程來實現,整個晶片在核心部分的面積只有0.09 mm2,佈局後模擬在350 MHz取樣頻率而訊號頻率為170 MHz的SNDR為55.96 dB。
A 10-bit 350-MSample/s Nyquist CMOS digital-to-analog converter is proposed in this thesis. Segmented current steering architecture that comprises 6MSB’s unary cells and 4LSB’s binary-weighted cells is applied in this design. Proper area of current source transistor is chosen to overcome mismatch error due to process variation. Cascoded switch structure is adopted in the current cell which improves the performance of the segmented DAC, such as INL and SNDR. In addition, a high speed and high crossing point switch driver is designed to minimize glitch error.
The simulation results show that INL is better than ±0.2 LSB and DNL is between ±0.1 LSB. SNDR better than 60 dB is simulated in the interval from dc to the Nyquist frequency. The power consumption of this DAC with a single 2.5 V supply is 36 mW for a near-Nyquist fundamental signal at a 350 MHz update rate. The SNDR of post-simulation for a 170 MHz signal at a 350 MHz update rate is 55.96 dB and the power of the post-simulation is 43.8 mW. The DAC is fabricated using TSMC standard 0.25μm 1P5M CMOS process. The chip has small active area of 0.09 mm2.
[1] P. Hendriks, “Specifying communication DAC’s,” IEEE Spectrum, vol. 34, pp. 58-69, July 1997.
[2] T. Miki, Y. Nakamura et al., “An 80MHz 8-bit CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 21, pp. 983-988, Dec. 1986
[3] D. Wouter J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A. Bastiaansen, “A Self-Calibration Technique for Monolithic High-Resolution D/A Converters”, IEEE J. Solid State Circuits, vol. 24, pp.1517-1522, Dec. 1989.
[4] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-b 70-MS/s CMOS D/A Converter”, IEEE J. Solid State Circuits, vol. 26, pp. 637-642, Apr. 1991.
[5] H. Kohno, Y. Nakamura et al., “A 350-MS/s 3.3-V 8-bit CMOS D/A converter using a delayed driving scheme,” in Proc. IEEE CICC, May 1995, pp. 10.5.1-10.5.4.
[6] C. H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6mm2” IEEE J. Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998.
[7] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, pp. 1959-1969, Dec. 1998.
[8] G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC”. IEEE J. Solid-State Circuits, vol. 34, pp. 1708-1718, Dec. 1999.
[9] A. R. Bugeja, B. S. Song, P. L. Rakers, and S. F. Gillig, “A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance” IEEE J. Solid State Circuits, vol. 34, pp 1719-1732, Dec. 1999.
[10] A. R. Bugeja, and B. S. Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC”, IEEE J. Solid-State Circuits, vol. 35, pp. 1841-1852, Dec. 2000.
[11] A. Van den Bosch, M. A. F. Borremans, M. S. J. Steyaert, W. Sansen, “A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter” IEEE J. Solid-State Circuits, vol. 36, pp. 315-324, Mar. 2001.
[12] B. J. Tesch and J. C. Garcia, “A Low Glitch 14-b 100-MHz D/A Converter ”, IEEE J. Solid State Circuits, vol. 32, pp. 1465-1469, Sep. 1997.
[13] J. Bastos, M. Steyaert, and W. Sansen, “A high yield 12-bit 250-MS/s CMOS D/A converter,” in Proc. IEEE CICC, May 1996, pp. 431-434.
[14] A. Van den Bosch, M. Borremans et al., “A 12-bit 200-MHz low glitch CMOS D/A converter,” in Proc. IEEE CICC, May 1998, pp. 249-252.
[15] P. E. Allen, D. R. Holberg, CMOS Analog Circuit Design. New York : Oxford, 2002.
[16] B. Razavi, Principles of Data Conversion System Design. New York : IEEE Press, 1995.
[17] M. Burns, and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement. New York : Oxford, 2001.
[18] R. Gregorian, Introduction to CMOS OP-AMPs and Comparators. New York : Wiley, 1999.
[19] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York : Wiley, 1997.
[20] R. Van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters. Boston, MA : Kluwer Academic, 1994.
[21] J. Wikner and N. Tan, “Modeling of CMOS digital-to-analog converters for telecommunication,” IEEE Trans. Circuits Syst. Ⅱ, vol. 46, pp. 489-499, May 1999.
[22] K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 1057-1066, Dec. 1986.
[23] M. J. M. Pelgrom, A. C. J. Duinmaiher, A. P. G. Welbers, “Matching properties of MOS transistors”, IEEE J. Solid-State Circuits, vol. 24, pp.1433-1440, Oct. 1989.
[24] C. Bastiaansen, D. Groeneveld, H. Schouwenaars, and H. Termeer, “A 10-b 40-MHz 0.8-μm CMOS current-output D/A converter,” IEEE J. Solid-State Circuits, vol. 26, pp. 917-921, July 1991.
[25] A. Cremonesi, F. Maloberti, and G.. Polito, “A 100-MHz CMOS DAC for video-graphic systems,” IEEE J. Solid-State Circuits, vol. 24, pp. 635-639, June 1989.
[26] J. Fournier and P. Senn, “A 130 MHz 8-bit CMOS video DAC for HDTV applications,” IEEE J. Solid-State Circuits, vol. 26, pp. 1073-1077, July 1991.
[27] D. Mercer, “A 16-b D/A Converter with increased spurious free dynamic range, ” IEEE J. Solid-State Circuits, vol. 29, pp. 1180-1181, Oct. 1994.
[28] ”Design Documents for TSMC 0.25um 1P5M Mixed Signal Process”
[29] Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for high-speed high-resolution current-steering CMOS D/A converters, ”in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, Sep. 1999, pp. 1193-1196.
[30] J. Bastos, M. Steyaert, B. Graindourze, and W. Sansen, “Matching of MOS Transistors with Different Layout Styles,” in Proc. IEEE Int. Conf. on Microelectronic Test Structures, vol. 9, Mar. 1996, pp. 17-18.