| 研究生: |
林育賢 Lin, Yu-Sian |
|---|---|
| 論文名稱: |
結合雜訊整型逐漸逼近式類比數位量化器之2-1多級串疊三角積分調變器 A Noise-shaping SAR Assisted MASH 2-1 Sigma-Delta Modulator |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 共同指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 雜訊整型逐漸逼近式類比數位量化器 、多級串疊三角積分調變器 |
| 外文關鍵詞: | Noise-shaping SAR, MASH |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個結合雜訊整型逐漸逼近式類比數位量化器之2-1多級串疊三角積分調變器。在以往的設計中,欲完成一個高速且高解析的三角積分調變器(SDM),必須提昇量化器的位元數且在不增加超取樣比率(oversampling ratio, OSR)的情況下,增加雜訊整型(noise-shaping)的階數。我們將具雜訊整型能力之逐漸逼近式類比數位量化器(noise-shaping quantizer)應用於實現多級串疊三角積分調變器(MASH)的第一級和第二級量化器(quantizer),不但提升了雜訊整型的階數,有效的減少多級串疊三角積分調變器因不匹配所造成的影響,並減少運算放大器的使用數量。
本設計以台積電90奈米CMOS製程實作測試晶片,晶片面積為1.6416毫米平方。當晶片操作在輸入電壓1.0伏特下,取樣頻率為每秒八千萬次,頻寬可達三百萬赫茲;當輸入訊號頻率為一百萬赫茲時,量測得到的訊號雜訊失真比(SNDR)達71.44 dB;晶片總共消耗19.91毫瓦,可換算得到轉換效率(FOM)為153.67 dB。觀察傅立葉轉換後的波形,高頻雜訊的斜率介於40 dB/dec和60 dB/dec之間,結果顯示為接近三階的雜訊整型,成功驗證所提之設計架構與技術。
This work presents a noise-shaping SAR assisted MASH 2-1 sigma-delta modulator. In previous designs, to implement a SDM with high resolution and high speed, the resolution of the quantizer has to be increased and the noise-shaping order must be raised with a fixed oversampling ratio (OSR). We have combined the first-stage and second-stage quantizers of the MASH into a noise-shaping quantizer. By combining the presented architecture and the quantizer, not only the noise-shaping order is raised, but also the number of OPAMPs and the mismatch effect between the first stage and the second stage can be reduced.
The proof-of-concept prototype was fabricated in TSMC 90-nm CMOS technology, and the chip occupies 1.6416 mm2. As the prototype operates at a supply voltage of 1.0-V, sampling rate of 80-MS/s, bandwidth of 3.333 MHz and input frequency of 1 MHz, the measurement result shows it can achieve 71.44 dB SNDR with the power consumption being 19.91 mW, and the Figure of Merit (FoM) is 153.67 dB. By observing the spectrum after FFT computation, the slope of it is between 40 dB/dec and 60 dB/dec, which verifies the almost 3rd noise-shaping successfully.
Bibliography
[1] B. Murmann, “ADC Performance Survey 1997-2018,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] S. Pavan, R. Schreier, G. C. Temes, and R. Schreier, Understanding delta-sigma data converters. (in English), 2017.
[3] T.-F. Hsu, “A First-order Low Distortion Sigma-Delta Modulator Using Split DWA Tchnique and SAR Quantizer,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July, 2014.
[4] I-J. Chao, “Design Techniques for Enhancing Power Efficiency of Delta-Sigma Modulators and Performance of Swithed-Cpacitor Circuits,” Ph.D. Dissertaion, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July, 2015.
[5] L. Breems and J. H. Huijsing, Continuous-Time Sigma-Delta Modulation for A/D Conversion in Radio Receivers, Kluwer Academic Publishers, 2001.
[6] B. Wu, S. Zhu, B. Xu and Y. Chiu, “A 24.7mW 45MHz-BW 75.3dB-SNDR SAR-assisted CT ΔΣ modulator with 2nd-order noise coupling in 65nm CMOS,” 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 270-271.
[7] A. Mesgarani, K. H. Sadeghi and S. U. Ay, “Continuous-Time/Discrete-Time (CT/DT) Cascaded Sigma-Delta Modulator for High Resolution and Wideband Applications,” 2010 IEEE Workshop on Microelectronics and Electron Devices, Boise, ID, 2010, pp. 1-4.
[8] V. Ferragina, A. Fornasari, U. Gatti, P. Malcovati and F. Maloberti, “Gain and offset mismatch calibration in time-interleaved multipath A/D sigma-delta modulators,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 12, pp. 2365-2373, Dec. 2004.
[9] R. E. Radke, A. Eshraghi and T. S. Fiez, “A 14-bit current-mode ΔΣ DAC based upon rotated data weighted averaging,” in IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1074-1084, Aug. 2000.
[10] M. Vadipour, “Techniques for preventing tonal behavior of data weighted averaging algorithm in Σ-Δ modulators,” in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 11, pp. 1137-1144, Nov. 2000.
[11] I. Fujimori et al., “A 90 dB SNR, 2.5 MHz output rate ADC using cascaded multibit ΔΣ modulation at 8x oversampling ratio,” 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056), San Francisco, CA, USA, 2000, pp. 338-339.
[12] K. Vleugels, S. Rabii and B. A. Wooley, “A 2.5-V sigma-delta modulator for broadband communications applications,” in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1887-1899, Dec. 2001.
[13] A. A. Hamoui and K. Martin, “Linearity enhancement of multibit ΔΣ modulators using pseudo data-weighted averaging,” 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353), Phoenix-Scottsdale, AZ, USA, 2002, pp. III-III.
[14] J. Harrison, M. Nesselroth, R. Mamuad, A. Behzad, A. Adams and S. Avery, “An LC bandpass ΔΣ ADC with 70dB SNDR over 20MHz bandwidth using CMOS DACs,” 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 146-148.
[15] H. Chae, J. Jeong, G. Manganaro and M. Flynn, “A 12mW low-power continuous-time bandpass ΔΣ modulator with 58dB SNDR and 24MHz bandwidth at 200MHz IF,” 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 148-150.
[16] T. Kuo, C. Yang, K. Chen, and W. Wang, “Design Method for High-Order Sigma–Delta Modulator Stabilized by Departure Angles Designed to Keep Root Loci in Unit Circle,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 10, pp. 1083-1087, 2006.
[17] F. Chen, T. Kuendiger and S. Erfani, “Improved Direct Stability Analysis of High-Order Continuous-Time Sigma-Delta Modulators,” 2006 IEEE North-East Workshop on Circuits and Systems, Gatineau, Que., 2006, pp. 73-76.
[18] Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa and T. Yoshitome, “A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping,” in IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 921-929, Dec. 1987.
[19] M. A. Mokhtar, P. Vogelmann, J. Wagner and M. Ortmanns, “Incremental Sturdy-MASH Sigma-Delta Modulator with Reduced Sensitivity to DAC Mismatch,” 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5.
[20] N. Maghari, S. Kwon, G. C. Temes and U. Moon, “Mixed-Order Sturdy MASH Δ-Σ Modulator,” 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, 2007, pp. 257-260.
[21] N. Maghari, S. Kwon and U. Moon, “74dB SNDR multi-loop sturdy-MASH delta-sigma modulator using 35dB opamp gain,” 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, 2008, pp. 101-104.
[22] J. A. Torreño, S. Paton, L. Conesa-Peraleja, L. Hernandez and D. Straeussnigg, “A noise coupled ΣΔ architecture using a Non Uniform Quantizer,” 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International Symposium on System-on-Chip (SoC), Oslo, 2015, pp. 1-4
[23] F. Colodro, A. Torralba and M. Laguna, “Time-Interleaved Multirate Sigma–Delta Modulators,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 10, pp. 1026-1030, Oct. 2006.
[24] A. Babaie-Fishani and P. Rombouts, “A Mostly Digital VCO-Based CT-SDM With Third-Order Noise Shaping,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 8, pp. 2141-2153, Aug. 2017.
[25] J. Kim, T. Jang, Y. Yoon, and S. Cho, “Analysis and Design of Voltage-Controlled Oscillator Based Analog-to-Digital Converter,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 18-30, 2010.
[26] F. Colodro and A. Torralba, “Linearity Enhancement of VCO-Based Quantizers for SD Modulators by Means of a Tracking Loop,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 6, pp. 383-387, 2014.
[27] T. Kim, C. Han and N. Maghari, “An 11.4mW 80.4dB-SNDR 15MHz-BW CT delta-sigma modulator using 6b double-noise-shaped quantizer,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 468-469.
[28] C. C. Lee, E. Alpman, S. Weaver, C. Lu, and J. Rizk, “A 66dB SNDR 15MHz BW SAR assisted ΔΣ ADC in 22nm tri-gate CMOS,” in 2013 Symposium on VLSI Circuits, 12-14 June 2013 2013, pp. C64-C65.
[29] J. Fredenburg and M. Flynn, “A 90MS/s 11MHz bandwidth 62dB SNDR noise-shaping SAR ADC,” 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 468-470.
[30] J. A. Fredenburg and M. P. Flynn, “A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2898-2904, Dec. 2012.
[31] W. Guo and N. Sun, “A 12b-ENOB 61µW noise-shaping SAR ADC with a passive integrator,” ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 405-408.
[32] Z. Chen, M. Miyahara and A. Matsuzawa, “A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC,” 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, 2015, pp. C64-C65.
[33] Changsok Han, Taewook Kim and N. Maghari, “SMASH-MASH delta-sigma modulator using noise-shaping quantizers,” 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), Vancouver, BC, 2016, pp. 1-4.
[34] W. Shen and G. C. Temes, “Double-sampled ΔΣ modulator with relaxed feedback timing,” in Electronics Letters, vol. 45, no. 17, pp. 875-877, 13 Aug. 2009.
[35] Y. Fujimoto, Y. Kanazawa, P. Lore and M. Miyamoto, “An 80/100MS/s 76.3/70.1dB SNDR ΔΣ ADC for Digital TV Receivers,” 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2006, pp. 201-210.
[36] Z. Chen, M. Miyahara and A. Matsuzawa, “A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain,” 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, 2016, pp. 309-312.
[37] R. Schreier, J. Silva, J. Steensgaard and G. C. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2358-2368, Nov. 2005.
[38] M. Yavari, O. Shoaei and F. Svelto, “Hybrid cascode compensation for two-stage CMOS operational amplifiers,” 2005 IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, 2005, pp. 1565-1568 Vol. 2.
[39] H. Zare-Hoseini, I. Kale and O. Shoaei, “Modeling of switched-capacitor delta-sigma Modulators in SIMULINK,” in IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 4, pp. 1646-1654, Aug. 2005.
[40] F. Wu et al., “A new op-amp noise model for switched-capacitor sigma-delta modulator in SIMULINK,” 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, Chengdu, 2014, pp. 1-2.
[41] S. Jaykar, P. Palsodkar and P. Dakhole, “Modeling of Sigma-Delta Modulator Non-Idealities in MATLAB/SIMULINK,” 2011 International Conference on Communication Systems and Network Technologies, Katra, Jammu, 2011, pp. 525-530.
[42] V. Hariprasath, J. Guerber, S. -. Lee and U. -. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” in Electronics Letters, vol. 46, no. 9, pp. 620-621, 29 April 2010.
[43] C. Liu, S. Chang, G. Huang and Y. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[44] Y. Zhu et al., “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[45] C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 386-387.
[46] Ch.-H. Hou, “An 8-bit 400-MS/s Calibration-Free SAR ADC with a Pre-amplifier-only Comparator,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Nov. , 2016.
[47] K. Yamamoto and A. Carusone, “A 1-1-1-1 MASH Delta-Sigma Modulator With Dynamic Comparator-Based OTAs,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1866-1883, Aug. 2012.
[48] T. Oh, N. Maghari and U. Moon, “A 5MHz BW 70.7dB SNDR noise-shaped two-step quantizer based ΔΣ ADC,” 2012 Symposium on VLSI Circuits (VLSIC), Honolulu, HI, 2012, pp. 162-163.
[49] Chan-Hsiang Weng, Tzu-An Wei, E. Alpman, Chang-Tsung Fu, Yi-Ting Tseng and Tsung-Hsien Lin, “An 8.5MHz 67.2dB SNDR CTDSM with ELD compensation embedded twin-T SAB and circular TDC-based quantizer in 90nm CMOS,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2.
[50] B. Nowacki, N. Paulino and J. Goes, “A 1V 77dB-DR 72dB-SNDR 10MHz-BW 2-1 MASH CT ΔΣM,” 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 274-275.
[51] H. Liu, X. Xing and G. Gielen, “An 85MHz-BW 68.5dB-SNDR ASAR-assisted CT 4-0 MASH ΔΣ modulator with half-range dithering-based DAC calibration in 28nm CMOS,” 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, 2018, pp. 1-4.
[52] Y. Dong et al., “15.5 A 930mW 69dB-DR 465MHz-BW CT 1-2 MASH ADC in 28nm CMOS,” 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 278-279.