| 研究生: |
邱鈺皓 Chiu, Yu-Ho |
|---|---|
| 論文名稱: |
適用於毫微微蜂巢式基地台之高增益天線設計 High Gain Antenna Designs for Femtocell |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 偶極天線 、陣列天線 、高增益天線 、環形天線 |
| 外文關鍵詞: | Dipole Antenna, Array Antenna, High Gain Antenna, Ring Antenna |
| 相關次數: | 點閱:145 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們將提出一種可雙頻段操作的高增益天線,並運用於毫微微蜂巢式基地台上。
首先,利用雙頻偶極天線作為高增益設計之單元天線,接著用饋入網路來做連結,採用1x4的陣列設計結合成雙頻高增益天線,接著透過結構上的調整以及接地的方式來縮減1x4雙頻高增益陣列天線之整體長度,使其更適合於小型化的毫微微蜂巢式基地台應用。天線操作頻段上包含目前最常使用的無線區域網路(WLAN : Wireless Local Area Network)2.4 GHz / 5 GHz雙頻帶,增益方面,低頻段部分大於7 dBi,高頻段部分則大於9 dBi,在輻射場型上,由於選用偶極天線作為單元天線且採用對稱式設計,所以在水平切面上保有良好的全向性輻射射場型。
本論文最後將縮小化的雙頻高增益天線與操作於第四代行動通訊(4G)系統LTE頻帶的環形天線 (Ring Antenna) 作整合,達成LTE與WLAN的雙模操作。
詳細的天線設計、模擬、量測、輻射場型、電流分佈及實驗討論都將在本論文中做分析及探討。
In this paper, we will propose a dual-band operation high gain antenna for Femtocell application.
First, a dual-band dipole antenna is used as a array unit of the high gain antenna array. Then a feeding network is apply to achieve the 1x4 dual-band array antenna design. By adjusting the antenna structure and the ground plane, the total length of 1x4 dual-band high gain array antenna can be reduced. It makes the proposed antenna more suitable for the femtocell applications. The antenna operating bandwidth can meet the normal bandwidth requirement of WLAN (Wireless Local Area Network) 2.4 GHz / 5 GHz dual-band. About the antenna gain, it is more than 7 dBi in low frequency and more than 9 dBi in high frequency. For the radiation pattern, a good omni-directional radiation pattern in the horizontal plane is obtained due to the symmetrical dipole antenna structure.
Finally, for achieveing the LTE (Long Term Evolution, fourth-generation(4G) mobile communication standard) and WLAN dual-mode operation. An integrated design including the compact dual-band high gain antenna and a LTE band ring antenna is proposed.
Details of the antenna design, simulation results, measurement results, radiation pattern, current distribution and experimental results will be analyzed and discussed in this paper.
[1] R. E. Munson,“Conformal microstrip antennas and microstrip phased arrays,” IEEE Trans. Antennas propagat.,vol.22﹐pp.74-78,Jan.1974
[2] C. W. Garvin, R. E. Munson, L. T. Ostwald and K. G. Schroeder, “Missile base mounted microstrip antennas.” IEEE Trans. Antennas Propagat. vol.22,pp.604-610,Sept.1977
[3] G, G , Sanford, "Conformal microstrip phased array for aircraft tests with ATS-6." IEEE Trans. Antennas Propagation, vol.22,pp.624-646, Sept.1978
[4] K. C. Gupta and A. Benalla,Microstrip Antenna Design. Artech House Inc.,1988
[5] K. R. Caver and J.W. Mink, “Microstrip Antenna technology,” IEEE Trans. Antennas Propagat, vol.29,pp.2-24,Jan.1981.
[6] D. M. Pozer, “Microstrip Antenna,”Proc.IEEE, vol.80,pp.79-91, Jan. 1992
[7] N. Herscovici, Z. Sipus and P. S. Kildal, “The cylindrical omnidirectional patch antenna,” IEEE Trans. Antennas Propagat., vol.49, pp.1746-1753, Dec.2001
[8] I. Jayakumar, R. Garg, B. K. Sarap and B. Lal, “A conformal cylindrical array for producing omnidirectional radiation pattern,” IEEE Trans. Antennas Propagat., vol.34,pp.1258-1261,Oct.1986.
[9] K. R. Audenaerde, S. Sabo and J. Y. Lee, “Microstrip antenna,” U.S. Patent No.6166702, Dec.2000
[10] H. C. Tung, S. T. Fang and K. L. Wong, “Printed dual-band monopole antenna for 2.4/5.2 GHz WLAN access point”, Microwave Opt. Technol. Lett., vol. 35,pp.286-288,Nov.20,2002
[11] T. H. Lam, M. J. Milicic Jr. and D. M. Pritchett, “Dipole antenna having co-axial radiators and feed,” U.S. Patent No.5387919,Feb.1995.
[12] M. Stolle, “Multi-frequency band antenna,” U.S. Patent No.6421024, Jul.2002.
[13] J. Le Balier, A.Le Bayon and D. Nedelec, “Vertical polarization antenna,” U.S. Patent No.6529171 B1, Mar.2003.
[14] T. E. Koscica and B. J. Liban, “Simplified stacked dipole antenna,” U.S. Patent No.6014112, Jan. 2000.
[15] A. Shor, “Parallel-feed planar high-frequency antenna,” U.S. Patent Pub. No.US 2003/0020665 A1,Jan.2003.
[16] A. Shor, “Dual band planar high-frequency antenna,” U.S. Patent Pub. No.US 2003/0020656 A1,Jan.2003.
[17] J. E. Lebaric and A. Shor, “Planar high-frequency antenna,” U.S. Patent Pub. No.US 2002/0190912 A1,Dec.2002.
[18] L. Zhu, Y. Guo and X. Chen, “High efficiency feed network for antenna,” U.S. Patent No.6377227 B1,Apr.2002.
[19] K. L. Wong, F. R. Hsiao and T. W. Chiou, “Omnidirectional planar dipole array antenna,” IEEE Trans. Antennas Propagat.,vol.52, Mar.2004.
[20] K. L. Wong, J. W. Lai and F. R. Hsiao, “Omnidirectional planar dipole array antenna for 2.4/5.2 GHz WLAN access point, ”Microwave Opt.Technol.Lett.,vol.39,pp.22-26,Oct.5,2003.
[21] K. L. Wong, Planar Antennas for Wireless Communications, John Wiley & Sons, New York,2003,p.219.
[22] D. M. Pozar, Microwave Engineering, second edition, John Wiley & Sons, New York,1998,Chap.2.
[23] R. J. Mailloux, J. F. Mcilvenna, P. K. Nicholas, “Microstrip array technology.” IEEE Trans. Antenna Propagat., vol.29,pp.25-37,Jan.1981.
[24] E. H. Newman and J.E. Tehan, “Analysis of a microstrip array and feed network,” IEEE Trans. Antenna Propagat., vol.33,pp.397-403, Apr. 1985.
[25] E. Leevine, G. Malamud, S. Shtrikman and D. Treves, “A study of microstrip antennas with the feed network,” IEEE Trans. Antenna Propagat., vol.37,pp.426-434, Apr. 1989.
[26] K. F. Lee , K. M. Luk , K. F. Long , Y. L. Yung and T. Huynh , “Experimental study of a two-element array of U-slot patches,” Electron. Lett.,vol.32,pp.418-420,Feb.29,1996.