簡易檢索 / 詳目顯示

研究生: 李明翰
Lee, Min-Han
論文名稱: 以可變電感控制相位之全橋LC並聯諧振電漿驅動電路分析與設計
Analysis and Design of Full-Bridge LC Parallel Resonant Plasma Driver with Variable-Inductor Based Phase Control
指導教授: 林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 164
中文關鍵詞: 大氣壓力電漿噴射器電漿射頻13.56 MHz全橋諧振槽可變電感可變停滯時間相位控制
外文關鍵詞: tmospheric pressure plasma jet (APPJ), plasma, RF, 13.56 MHz, full-bridge, resonant tank, variable-inductor, variable dead-time, phase control
相關次數: 點閱:130下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一以可變電感控制相位之射頻全橋LC並聯諧振電漿驅動電路分析與設計。基於射頻電漿模組之操作頻率主要固定在13.56MHz,以符合電磁相容性規範,故利用可變電感控制架構來調整電導增益,以調節負載電流,並可避免電容性輸入阻抗,以達零電壓切換之目的。為使開關有最小傳導損失,其停滯時間之設計準則必須考量零電壓切換條件與LC並聯諧振槽電路的最小環路電流之需求。此外,電路操作於寬廣之輸入直流電壓範圍內,藉由可變停滯時間控制架構,可使開關皆達到零電壓切換條件。本論文基於已發展之射頻電漿等效電路模型,據以分析並設計一射頻電漿驅動電路。
    最後,藉由使用電路模擬軟體SIMPLIS®,來模擬一以可變電感控制相位之全橋LC並聯諧振電漿驅動電路,俾以驗證電路所需之機能。此外,將停滯時間和落後相位之模擬數據與計算結果相比較,俾以驗證設計準則之可行性。

    This thesis presents the analysis and design of the full-bridge (FB) LC parallel resonant plasma driver at the radio-frequency (RF) operation with variable-inductor based phase control scheme. Since the operating frequency of the RF plasma module is mainly fixed at 13.56MHz for EMC regulation, the variable-inductor control scheme is able to adjust the transconductance amplitude for load-current regulation, and avoids capacitive input impedance to allow for zero-voltage switching (ZVS).
    In order to have minimal conduction loss on the switches, the design criterion of the required dead-time for ZVS condition with the minimal circulating current of the LC parallel resonant tank is required. Additionally, the variable dead-time control scheme achieves ZVS within a wide DC-bus voltage range. Based on the equivalent circuit models of the RF plasma module described prior work, the analysis and design of the driver for the RF plasma module are presented.
    Finally, by using the SIMPLIS® simulation software, the FB LC parallel resonant plasma driver with the variable-inductor based phase control is simulated to validate the achievement of required functions. Furthermore, the dead-times and lagging phases are obtained from the simulation results, which are compared with the calculated results to validate the feasibility of design criterion.

    CHAPTER 1. INTRODUCTION 1 1.1. BACKGROUND 1 1.2. MOTIVATION 3 1.3. THESIS OUTLINE 4 CHAPTER 2.  EQUIVALENT CIRCUIT MODEL OF LAAPPJ 6 2.1. INTRODUCTION 6 2.2. V-I CHARACTERISTICS OF LAAPPJ 6 2.3. NO-DISCHARGE-MODE MODEL 8 2.4. α-MODE MODEL 11 2.5. SUMMARY 13 CHAPTER 3. ANALYSIS AND DESIGN OF CONTROL MECHANISM FOR RESONANT TANK 14 3.1. INTRODUCTION 14 3.2. ANALYSIS AND DESIGN OF VARIABLE-INDUCTOR BASED FULL-BRIDGE LC PARALLEL RESONANT PLASMA DRIVER 17 3.2.1. Analysis of LC Parallel Resonant Tank with Plasma Load 17 3.2.2. Criteria for ZVS Condition 34 3.2.3. Issue of Variable-Inductance Range and Constant Dead-Time 44 3.3. VARIABLE-INDUCTOR CONTROL FOR LOAD-CURRENT REGULATION 60 3.3.1. B-H Characteristics 60 3.3.2. Variable Inductor 62 3.3.3. Load-Current Regulation 66 3.4. VARIABLE DEAD-TIME CONTROL 87 3.5. PHASE CONTROL 90 3.6. SUMMARY 92 CHAPTER 4. SIMULATION VERIFICATIONS 93 4.1. INTRODUCTION 93 4.2. IMPLEMENTATION OF FULL-BRIDGE LC PARALLEL RESONANT PLASMA DRIVER 93 4.3. SIMULATION RESULTS 97 4.4. SUMMARY 109 CHAPTER 5.  CONCLUSIONS AND FUTURE WORK 110 REFERENCES 112 APPENDIX A. MATHCAD® EQUATION DERIVATION 115 A.1. EQUATIONS DERIVATION OF FB LC PARALLEL RESONANT TANK WITH RF PLASMA MODULE 115 A.2. EQUATIONS DERIVATION OF RESONANT CAPACITANCE AND AVERAGE INPUT POWER FOR LC PARALLEL RESONANT TANK WITH EQUIVALENT CIRCUIT OF RF PLASMA MODULE IN α MODE . 125 A.3. EQUATION DERIVATION OF INPUT VOLTAGE FOR LC PARALLEL RESONANT TANK WITH EQUIVALENT CIRCUIT OF RF PLASMA MODULE IN NO-DISCHARGE MODE 127 APPENDIX B. MATHCAD® CALCULATION PROGRAMS 128 B.1. PARAMETERS OF EQUIVALENT CIRCUIT FOR RF PLASMA MODULE 128 B.2. DESIGN OF PARAMETERS FOR RESONANT CAPACITOR WITH MINIMAL RESONANT CIRCUIT 131 B.3. ANALYSIS OF LC PARALLEL RESONANT PLASMA DRIVER 134 B.4. DESIGN OF VARIABLE-INDUCTOR FOR LC PARALLEL RESONANT PLASMA DRIVER 139 APPENDIX C. SIMPLIS® SIMULATION SCHEMATICS 147 C.1. SIMPLIS® SIMULATION OF PARAMETERS FOR NONLINEAR INDUCTOR 147 C.2. SIMPLIS® SIMULATION SCHEMATIC OF FB LC PARALLEL RESONANT PLASMA DRIVER 150 APPENDIX D. SIMPLIS® SIMULATION LOOP-GAIN FOR LC PARALLEL RESONANT PLASMA DRIVER 151 D.1. VOLTAGE MEASUREMENT FOR OPEN-LOOP CONTROL-TO-OUTPUT CURRENT 151 D.1.1. SIMPLIS® Simulation Schematic 151 D.1.2. Bode Diagrams 152 D.2. CURRENT MEASUREMENT FOR OPEN-LOOP CONTROL-TO-OUTPUT CURRENT 156 D.2.1. SIMPLIS® Simulation Schematic 156 D.2.2. Bode Diagrams 157 D.3. COMPARISON OF LOOP-GAINS 161 D.3.1. SIMPLIS® Simulation Schematics of Loop-Gain 161 D.3.2. Bode Diagrams of Loop-Gain 164

    [1] H. W. Herrmann, I. Henins, J. Park, and G. S. Selwyn, “Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ),” Phys. Plasmas, vol. 6, Issues 5, pp. 2284-2289, Dec. 1998.
    [2] Dan Bee Kim, B. Gweon, S.Y. Moon, W. Choe, “Decontamination of the chemical warfare agent stimulant dimethyl methylphosphonate by means of large-area low-temperature atmospheric pressure plasma,” Current Applied Physics, vol. 9, Issues 5, pp. 1093-1096, Dec. 2008.
    [3] Claire Tendero, Christelle Tixier, Pascal Tristant, Jean Desmaison, Philippe Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, Issues 1, pp. 2-30, No. 2005.
    [4] European Standard on Telecommunications series, ETSI, 2009.
    [5] J.M. Alonso, M.A. Dalla Costa, M. Rico-Secades, J. Cardesin and J. Garcia, “Investigation of a New Control Strategy for Electronic Ballasts Based on Variable Inductor,” IEEE Trans. on Power Electron., vol. 55, no.1, pp. 3-10, Jan. 2008.
    [6] M.S. Perdigao, J.M. Alonso, M.A. Dalla Cost and E.S. Saraiva, “Optimization of universal ballasts through magnetic regulators,” APEC, pp. 1214-1220, Feb. 2008.
    [7] M.S. Perdigao, J.M. Alonso, M.A. Dalla Costa and E.S. Saraiva, “A variable inductor MATLAB/Simulink behavioral model for application in magnetically-controlled electronic ballasts,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 349-354, June 2008.
    [8] M. S. Perdigao, J. M. Alonso, M. A. Dalla Costa and E. S. Saraiva, “Using Magnetic Regulators for the Optimization of Universal Ballasts,” IEEE Trans. on Power Electronics, vol. 23, Issue 6, pp. 3126-3134, Nov. 2008.
    [9] J. Laimer, S. Haslinger, W. Meissl, J. Hell, H. Störi, “Investigation of an atmospheric pressure radio-frequency capacitive plasma jet,” Vacuum, vol. 79, Issues 3-4, pp. 209-214, March 2005.
    [10] S. Haslinger, J. Laimer, H. Störi, “Stability conditions of argon and helium gas mixtures in an atmospheric pressure plasma jet,” Vacuum, vol. 82, Issues 2, pp. 142-245, 2008.
    [11] K. Köhler, J. W. Coburn, D. E. Horne, E. Kay, and J. H. Keller, “Plasma potentials of 13.56-MHz rf argon glow discharges in a planar system,” J. Appl. Phys., vol. 57, no. 1, pp. 59-66, Jan. 1985.
    [12] Masaki Hirayama, Kazuhide Ino, and Tadahiro Ohmi, “Analysis of RF plasma using electrical equivalent circuit,” IEEE/UCS/SEMI International Symposium on Semiconductor Manufacturing, pp. 283-286, Sept. 1995.
    [13] X Yang, M Moravej, G R Nowling, S E Babayan, J Panelon, J P Chang and R F Hicks, “Comparison of an atmospheric pressure, radio-frequency discharge operating in the α and γ modes,” Plasma Sources Sci. Technol., vol. 14, no. 2, pp. 314-320, Mar. 2005.
    [14] Jaeyoung Park, I. Henins, H. W. Herrmann, and G. S. Selwyn, “Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source,” J. Appl. Phys., vol. 89, no. 1, pp. 20-28, Jan. 2001.
    [15] Hua-Bo Wang, Wen-Ting Sun, He-Ping Li, and Cheng-Yu Bao, “Discharge characteristics of atmospheric-pressure radio-frequency glow discharges with argon/nitrogen,” Appl. Phys. Lett., vol. 89, issue 16, no. 161504, pp.1-3, Oct. 2006.
    [16] H. Conrads and M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Sci. Technol., vol. 9, no. 4, pp. 441-454, Sep. 2000.
    [17] Yong-Kai Lin and Yen-Shin Lai, ”Dead-Time Elimination of PWM-Controlled Inverter/Converter Without Separate Power Sources for Current Polarity Detection Circuit,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2121-2127, June 2009.
    [18] Yong-Kai Lin and Yen-Shin Lai, “Dead-time elimination of PWM-Controlled inverter/converter without separate power sources for current polarity detection circuit,” IEEE International Conference Sustainable Energy Technologies, pp. 130-135, Nov. 2008.
    [19] Lihua Chen and Fang Zheng Peng, “Dead-Time Elimination for Voltage Source Inverters,” IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 574-580, March 2008.
    [20] Lihua Chen and Fang Z. Peng, “Elimination of Dead-time in PWM Controlled Inverters,” IEEE Applied Power Electronics Conference, pp. 306-309, March 2007.
    [21] Zhigan Wu, Jin Wang, and Jianping Ying, “A novel dead time compensation method,” IEEE IPEMC, vol. 2, pp. 699-703, Aug. 2004.
    [22] Zhigan Wu and Jianping Ying, ”A novel dead time compensation method for PWM inverter,” IEEE PEDS, vol. 2, pp. 1258-1263, Nov. 2003.
    [23] Bo Yang, Topology Investigation for Front End DC/DC Power Conversion for Distributed Power System, Ph.D. Dissertation, Virginia Tech, Sept. 2003.
    [24] Melvin C. Cosby, Jr. and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Trans. Ind. Electron., vol. 41, no. 4, pp. 418-425, Aug. 1994.

    下載圖示 校內:2015-02-08公開
    校外:2015-02-08公開
    QR CODE