簡易檢索 / 詳目顯示

研究生: 黃子源
Huang, Tzu-Yuan
論文名稱: 基於運動學與動力學物理限制之工業用機械手臂運動規劃研究
Study on Motion Planning for Industrial Manipulators based on Kinematic Constraints and Dynamic Constraints
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 163
中文關鍵詞: 運動規劃機器人控制雙向掃描進給率最佳化
外文關鍵詞: motion Planning, robot Control, bidirectional scan algorithm, feedrate optimization
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著各國人力成本增加與工業4.0 的興起,工業用機械手臂之需求與日俱
    增,其應用相較於以前更加多元,從原本執行取放、插件等任務,到今日許多工業應用如:焊接、表面加工、金屬加工等。這些應用中,機械手臂的精度與工作效率非常重要,然而機械手臂為高度非線性系統,若在卡式空間為追求效率而提高進給率將導致關節空間的物理量有飽和現象進而影響精度。此外,多數研究並未討論只有機械手臂姿態(orientation)有變化但其末端效應器位置不動之軌跡,本論文發展一套完整之技術,從工業用機械手臂之順逆向運動學關係建立、動力學模型建立,並考慮運動學與動力學等物理限制,在預覽階段完成機械手臂之進給率限制以及卡氏空間加速度限制之規劃,並建立一套前加減速演算法依照預覽階段規劃之限制進行加減速,最後於插值器進行細插值。本論文提出之規劃方法經由數學推導,證明其求解進給率與加速度限制時必定有解,相較於傳統進給率需花費計算資源尋找切換點,本論文提出之方法較為節省資源,且具備完整性(cpmpletness),適合應用於控制器產品。此外,本論文亦針對只有機械手臂姿態有變化但其末端效應器位置不動之軌跡進行討論,並利
    用四元數建立旋轉關係以及微分運動學關係式,完成角速度、角加速度與關節空間物理量之推導,最後進行角速度規劃。本論文藉由提出之運動規劃演算法,考量關節速度、關節加速度、關節轉矩等物理限制,分別對機械手臂只有位置變化但無姿態變化、只有姿態變化但機械手臂末端點不動和機械手臂末端點位置與姿態皆有變化等三種工作軌跡進行模擬驗證與機台實作,由模擬與實驗結果可以得知演算法能夠在不違反機械手臂物理限制之下,達到接近時間最佳化之效果,適用於機械手臂產品且符合其高速高精之需求。

    With increasing Labor costs and the popularity of Industry 4.0, the requirements of industrial manipulators have risen gradually since 2009, with its application fields become more and more wide-ranging, such as welding, surface machining, and metal machining. In addition, it is necessary to increase the processing efficiency and the accuracy of robots. The main purpose of this thesis is to develop a motion planning algorithm for industrial manipulators based on kinematic constraints and dynamic constraints so that the joint velocity, joint acceleration and joint torque of manipulators will not exceed their limits. The motion planning approach proposed in this thesis is mathematically proven to be robust, as it does not need to find switch points, a process which is time comsuming in conventional methods. In contrast to conventional methods which only discuss the case that the total arc length of a work path does not equal zero, the proposed approach can plan the angular velocity of the manipulators in which only the orientation of the end-effector changes by partial differentiating the inverse kinematics equation and quaternion. Moreover, the motion planning technique developed in this thesis covers many topics, including forward kinematics, inverse kinematics of a robot, robot dynamics, system identification, acceleration/deceleration algorithm and axis command interpolation. The simulations and experiments of motion planning carried out on a 6-DOF industrial manipulator. Simulation and experimental results show that the joint velocity, joint acceleration and joint torque do not violate the physical constraints, and the work efficiency is near time optimal, meeting the requirement of high speed and high accuracy.

    中文摘要 ................................................ I EXTENDED ABSTRACT ....................... II 誌謝 .............................................. X 目錄 ................................................. XIII 表目錄 ................................................ XVI 圖目錄 ........................................... XVII 1 第一章、緒論 ................................. 1 1.1 研究動機 .................................... 1 1.2 文獻回顧 .................................... 2 1.3 論文貢獻與架構 .......................... 7 2 第二章、順逆向運動學與運動學限制 ............................................ 10 2.1 順向運動學MDH 模型 .............................. 10 2.2 尤拉角表示法與四元數表示法 .......................... 14 2.3 逆向運動學求解 ........................................ 22 2.4 運動學與進給率關係 .............................. 26 2.5 本章小結 ................................ 29 3 第三章、動力學模型與限制 ....................................................................... 30 3.1 Lagrange Euler 法與進給率關係 .......................................................... 30 3.2 Newton Euler 法與進給率關係 ............................................................ 32 3.3 系統鑑別之動力學模型與進給率關係................................................ 36 3.4 本章小結 ................................................................................................ 37 4 第四章、進給率限制與卡氏空間加速度限制之規劃 ............................... 38 XIV 4.1 初始進給率上限 .................................................................................... 38 4.2 雙向掃描法 ............................................................................................ 39 4.3 方法之存在解證明 ................................................................................ 49 4.3.1 方法有解證明步驟一 ................................................................ 51 4.3.2 方法有解證明步驟二 ................................................................ 54 4.3.3 方法有解證明步驟三 ................................................................ 58 4.4 本章小結 ................................................................................................ 59 5 第五章、插值與加減速 ............................................................................... 60 5.1 粗插值 .................................................................................................... 60 5.1.1 直線與四元數球面線性插值 .................................................... 61 5.1.2 位移粗插值法 ............................................................................. 65 5.1.3 姿態粗插值法 ............................................................................. 66 5.1.4 綜合粗插值法 ............................................................................. 68 5.2 4 Block 梯形加減速法 ......................................................................... 69 5.3 細插值器 ................................................................................................ 74 5.4 本章小結 ................................................................................................ 77 6 第六章、模擬與實驗 ................................................................................... 78 6.1 模擬介紹 ................................................................................................ 79 6.2 位移插值法模擬 .................................................................................... 80 6.2.1 基於軸速度與軸加速度之限制模擬 ........................................ 81 6.2.2 基於軸速度與關節轉矩之限制模擬 ........................................ 86 6.2.3 基於軸速度、軸加速度與關節轉矩模擬 ................................ 90 6.3 姿態插值法模擬 .................................................................................... 95 6.3.1 基於軸速度與軸加速度之限制模擬 ........................................ 97 6.3.2 基於軸速度與關節轉矩之限制模擬 ...................................... 101 XV 6.3.3 基於軸速度、軸加速度與關節轉矩模擬 .............................. 106 6.4 綜合插值法模擬 .................................................................................. 111 6.4.1 基於軸速度與軸加速度之限制模擬 ...................................... 112 6.4.2 基於軸速度與關節轉矩之限制模擬 ...................................... 117 6.4.3 基於軸速度、軸加速度與關節轉矩模擬 .............................. 122 6.5 實驗環境與介紹 .................................................................................. 127 6.6 位移插值法實驗 .................................................................................. 130 6.6.1 基於軸速度與軸加速度之限制實驗 ...................................... 130 6.6.2 基於軸速度與關節轉矩之限制實驗 ...................................... 133 6.6.3 基於軸速度、軸加速度與關節轉矩實驗 .............................. 136 6.7 姿態插值法實驗 .................................................................................. 138 6.7.1 基於軸速度與軸加速度之限制實驗 ...................................... 139 6.7.2 基於軸速度與關節轉矩之限制實驗 ...................................... 141 6.7.3 基於軸速度、軸加速度與關節轉矩實驗 .............................. 144 6.8 綜合插值法實驗 .................................................................................. 146 6.8.1 基於軸速度與軸加速度之限制實驗 ...................................... 147 6.8.2 基於軸速度與關節轉矩之限制實驗 ...................................... 149 6.8.3 基於軸速度、軸加速度與關節轉矩實驗 .............................. 152 6.9 本章小結 .............................................................................................. 155 7 第七章、結論與建議 ................................................................................. 157 7.1 結論 ...................................................................................................... 157 7.2 未來展望與建議 .................................................................................. 158 8 參考文獻 ..................................................................................................... 159

    [1] 黃仲宏, “2020年工業機器人產業發展趨勢與台灣的機會,” 機械工業雜誌, no. 442, pp. 18-23, 2020.
    [2] 黃仲宏, “台灣工業機器人產業競爭力分析,” 機械工業雜誌, no. 436, pp. 4-11, 2019.
    [3] 黃美玲, “工業機器人與自動化產業商機探索,” 證券服務, no. 633, pp. 99-101, 2015.
    [4] 黃仲宏, “從智慧製造趨勢看2019年台灣工業機器人的發展機會,” 機械工業雜誌, no. 430, pp. 28-32, 2019.
    [5] A. Gasparetto, and V. Zanotto, “A new method for smooth trajectory planning of robot manipulators,” Mechanism and Machine Theory, vol. 42, no. 4, pp. 455-471, 2007.
    [6] A. Gasparetto, and V. Zanotto, “A technique for time-jerk optimal planning of robot trajectories,” Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 415-426, 2008.
    [7] V. Zanotto, A. Gasparetto, A. Lanzutti, P. Boscariol, and R. Vidoni, “Experimental Validation of Minimum Time-jerk Algorithms for Industrial Robots,” Journal of Intelligent & Robotic Systems, vol. 64, no. 2, pp. 197-219, 2011.
    [8] 李漢彰, “機器手臂的軌跡規劃時間最優化研究,” 碩士論文, 國立虎尾科技大學自動化工程系, 中華民國, 2018.
    [9] X. Shi, H. Fang, and L. Guo, “Multi-objective optimal trajectory planning of manipulators based on quintic NURBS,” in Proceedings of 2016 IEEE International Conference on Mechatronics and Automation, 2016, pp. 759-765.
    [10] J. Huang, P. Hu, K. Wu, and M. Zeng, “Optimal time-jerk trajectory planning for industrial robots,” Mechanism and Machine Theory, vol. 121, pp. 530-544, 2018.
    [11] 郭倫毓, “多軸加工機之智慧型高速高精度軌跡控制,” 博士論文, 國立台灣大學機械工程學研究所, 中華民國, 2002.
    [12] J. Jahanpour, and M. R. Alizadeh, “A novel acc-jerk-limited NURBS interpolation enhanced with an optimized S-shaped quintic feedrate scheduling scheme,” The International Journal of Advanced Manufacturing Technology, vol. 77, no. 9-12, pp. 1889-1905, 2014.
    [13] W. Fan, X.-S. Gao, W. Yan, and C.-M. Yuan, “Interpolation of parametric CNC machining path under confined jounce,” The International Journal of Advanced Manufacturing Technology, vol. 62, no. 5-8, pp. 719-739, 2012.
    [14] A. Olabi, R. Bearee, E. Nyiri, and O. Gibaru, “Enhanced trajectory planning for machining with industrial six-axis robots,” in Proceedings of 2010 IEEE International Conference on Industrial Technology, 2010, pp. 500-506.
    [15] A. Olabi, R. Béarée, O. Gibaru, and M. Damak, “Feedrate planning for machining with industrial six-axis robots,” Control Engineering Practice, vol. 18, no. 5, pp. 471-482, 2010.
    [16] R.-S. Lin, and Y. Koren, “Ruled Surface Machining on Five-Axis CNC Machine Tools,” Journal of Manufacturing Processes, vol. 2, no. 1, pp. 25-35, 2000.
    [17] J. M. Langeron, E. Duc, C. Lartigue, and P. Bourdet, “A new format for 5-axis tool path computation, using Bspline curves,” Computer-Aided Design, vol. 36, no. 12, pp. 1219-1229, 2004.
    [18] M.-Y. Cheng, M.-C. Tsai, and J.-C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” International Journal of Machine Tools and Manufacture, vol. 42, no. 7, pp. 801-813, 2002.
    [19] B. Sencer, Y. Altintas, and E. Croft, “Feed optimization for five-axis CNC machine tools with drive constraints,” International Journal of Machine Tools and Manufacture, vol. 48, no. 7-8, pp. 733-745, 2008.
    [20] Y. Sun, Y. Zhao, Y. Bao, and D. Guo, “A novel adaptive-feedrate interpolation method for NURBS tool path with drive constraints,” International Journal of Machine Tools and Manufacture, vol. 77, pp. 74-81, 2014.
    [21] Y. Sun, Y. Zhao, J. Xu, and D. Guo, “The feedrate scheduling of parametric interpolator with geometry, process and drive constraints for multi-axis CNC machine tools,” International Journal of Machine Tools and Manufacture, vol. 85, pp. 49-57, 2014.
    [22] Y. Sun, Y. Zhao, Y. Bao, and D. Guo, “A smooth curve evolution approach to the feedrate planning on five-axis toolpath with geometric and kinematic constraints,” International Journal of Machine Tools and Manufacture, vol. 97, pp. 86-97, 2015.
    [23] M. Chen, J. Xu, and Y. Sun, “Adaptive feedrate planning for continuous parametric tool path with confined contour error and axis jerks,” The International Journal of Advanced Manufacturing Technology, vol. 89, no. 1-4, pp. 1113-1125, 2017.
    [24] A. Bharathi, and J. Dong, “Feedrate optimization for smooth minimum-time trajectory generation with higher order constraints,” The International Journal of Advanced Manufacturing Technology, vol. 82, no. 5-8, pp. 1029-1040, 2016.
    [25] F. Liang, J. Zhao, and S. Ji, “An iterative feed rate scheduling method with confined high-order constraints in parametric interpolation,” The International Journal of Advanced Manufacturing Technology, vol. 92, no. 5-8, pp. 2001-2015, 2017.
    [26] M. Chen, and Y. Sun, “A moving knot sequence-based feedrate scheduling method of parametric interpolator for CNC machining with contour error and drive constraints,” The International Journal of Advanced Manufacturing Technology, vol. 98, no. 1-4, pp. 487-504, 2018.
    [27] J. Jeevamalar, and S. Ramabalan, “Optimal trajectory planning for autonomous robots - A review,” in Proceedings of 2012 IEEE-International Conference on Advances In Engineering, Science And Management, 2012, pp. 269-275.
    [28] D. Constantinescu, and E. A. Croft, “Smooth and time-optimal trajectory planning for industrial manipulators along specified paths,” Journal of Robotic Systems, vol. 17, no. 5, pp. 233-249, 2000.
    [29] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl, “Time-Optimal Path Tracking for Robots: A Convex Optimization Approach,” IEEE Transactions on Automatic Control, vol. 54, no. 10, pp. 2318-2327, 2009.
    [30] F. Debrouwere, W. Van Loock, G. Pipeleers, Q. T. Dinh, M. Diehl, J. De Schutter, and J. Swevers, “Time-Optimal Path Following for Robots With Convex–Concave Constraints Using Sequential Convex Programming,” IEEE Transactions on Robotics, vol. 29, no. 6, pp. 1485-1495, 2013.
    [31] Q. Zhang, S.-R. Li, J.-X. Guo, and X.-S. Gao, “Tractable Algorithm for Robust Time-Optimal Trajectory Planning of Robotic Manipulators under Confined Torque,” International Journal of Computers Communications & Control, vol. 10, no. 1, pp. 123-135, 2015.
    [32] Q. Zhang, and M.-Y. Zhao, “Minimum time path planning of robotic manipulator in drilling/spot welding tasks,” Journal of Computational Design and Engineering, vol. 3, no. 2, pp. 132-139, 2016.
    [33] H. Liu, Q. Liu, P. Sun, Q. Liu, and S. Yuan, “The optimal feedrate planning on five-axis parametric tool path with geometric and kinematic constraints for CNC machine tools,” International Journal of Production Research, vol. 55, no. 13, pp. 3715-3731, 2017.
    [34] T.-C. Lu, and S.-L. Chen, “Genetic algorithm-based S-curve acceleration and deceleration for five-axis machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 87, no. 1-4, pp. 219-232, 2016.
    [35] T.-C. Lu, S.-L. Chen, and E. C.-Y. Yang, “Near Time-Optimal S-Curve Velocity Planning for Multiple Line Segments Under Axis Constraints,” IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9582-9592, 2018.
    [36] Y. Chen, and F. Dong, “Robot machining: recent development and future research issues,” The International Journal of Advanced Manufacturing Technology, vol. 66, no. 9-12, pp. 1489-1497, 2013.
    [37] R. Katzschmann, T. Kröger, T. Asfour, and O. Khatib, “Towards online trajectory generation considering robot dynamics and torque limits,” in Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 5644-5651.
    [38] M. Vulliez, S. Lavernhe, and O. Bruneau, “Dynamic approach of the feedrate interpolation for trajectory planning process in multi-axis machining,” The International Journal of Advanced Manufacturing Technology, vol. 88, no. 5-8, pp. 2085-2096, 2017.
    [39] C. Guarino Lo Bianco, and O. Gerelli, “Online Trajectory Scaling for Manipulators Subject to High-Order Kinematic and Dynamic Constraints,” IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1144-1152, 2011.
    [40] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-Optimal Control of Robotic Manipulators Along Specified Paths,” The International Journal of Robotics Research, vol. 4, no. 3, pp. 3-17, 1985.
    [41] K. Shin, and N. McKay, “Minimum-time control of robotic manipulators with geometric path constraints,” IEEE Transactions on Automatic Control, vol. 30, no. 6, pp. 531-541, 1985.
    [42] L. Zlajpah, “On time optimal path control of manipulators with bounded joint velocities and torques,” in Proceedings of 1996 IEEE International Conference on Robotics and Automation, 1996, pp. 1572-1577.
    [43] J. Dong, and J. A. Stori, “A Generalized Time-Optimal Bidirectional Scan Algorithm for Constrained Feed-Rate Optimization,” Journal of Dynamic Systems, Measurement, and Control, vol. 128, no. 2, pp. 379-390, 2006.
    [44] J. Dong, P. M. Ferreira, and J. A. Stori, “Feed-rate optimization with jerk constraints for generating minimum-time trajectories,” International Journal of Machine Tools and Manufacture, vol. 47, no. 12-13, pp. 1941-1955, 2007.
    [45] 黃昕, 李迪, 李方, 何英武, “基於雙向掃描演算法的小線段速度規劃”,計算機集成製造系統雜誌, vol. 11, 2009.
    [46] X. Beudaert, S. Lavernhe, and C. Tournier, “Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path,” International Journal of Machine Tools and Manufacture, vol. 57, pp. 73-82, 2012.
    [47] Q.-C. Pham, “A General, Fast, and Robust Implementation of the Time-Optimal Path Parameterization Algorithm,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1533-1540, 2014.
    [48] Y. Sun, Y. Bao, K. Kang, and D. Guo, “An adaptive feedrate scheduling method of dual NURBS curve interpolator for precision five-axis CNC machining,” The International Journal of Advanced Manufacturing Technology, vol. 68, no. 9-12, pp. 1977-1987, 2013.
    [49] Z.-y. Jia, D.-n. Song, J.-w. Ma, G.-q. Hu, and W.-w. Su, “A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints,” International Journal of Machine Tools and Manufacture, vol. 116, pp. 1-17, 2017.
    [50] D.-N. Song, and J.-W. Ma, “Interval partition-based feedrate scheduling with axial drive constraints for five-axis spline toolpaths,” The International Journal of Advanced Manufacturing Technology, vol. 105, no. 11, pp. 4701-4714, 2019.
    [51] H. Pham, and Q.-C. Pham, “On the structure of the time-optimal path parameterization problem with third-order constraints,” in Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 679-686.
    [52] K. M. Lynch, and F. C. Park, “Modern Robotics: Mechanics, Planning, and Control, ” Cambridge University, 2017.
    [53] P. Shen, X. Zhang, and Y. Fang, “Complete and Time-Optimal Path-Constrained Trajectory Planning With Torque and Velocity Constraints: Theory and Applications,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 735-746, 2018.
    [54] S.-H. Suh, S.-K. Kang, D.-H. Chung, and I. Stroud, Theory and Design of CNC Systems, Springer Series in Advanced Manufacturing, 2008.
    [55] J. J. Craig, Introduction to robotics: mechanics and control, Upper Saddle River, NJ, USA: Pearson Prentice-Hall, 2009.
    [56] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision and intelligent, New York, NY, USA: McGraw-Hill, 1987.
    [57] W. R. Hamilton, LL. D, M. R. I. A, Lecture On Quaternion, London, 1853

    下載圖示 校內:2025-07-08公開
    校外:2025-07-08公開
    QR CODE