| 研究生: |
雷特里 Torres Viteri, Diego Eduardo |
|---|---|
| 論文名稱: |
利用高精度淹水潛勢圖進行淹水損失評估:以高雄市為例 Assessing Economic Flood Loss based on High-Resolution Inundation Maps: A case study in Kaohsiung, Taiwan |
| 指導教授: |
張駿暉
Jang, Jiun-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 洪水損失 、GIS 、深度-損失曲線 、高解析度淹水圖 、降雨 |
| 外文關鍵詞: | Flood loss, GIS, depth-damage curves, high-resolution inundation maps, rainfall |
| 相關次數: | 點閱:16 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究評估了臺灣高雄市的經濟洪水損失,利用高解析度淹水圖增強洪水風險管理和城市韌性。其目標是量化多個部門的損失,並為緩解措施提供可行見解。研究方法將 QGIS 處理的高解析度淹水圖與住宅、工業、農業和公共資產的空間資料相結合。分析了洪水場景—八個重現期 (T),有/無風暴潮 (SS),十二種降水量 (P),以及三種持續時間 (6、12、24 小時)—使用深度-損失曲線 (DDC) 在 Excel 中估計損失。
結果顯示,獨立房屋的損失是公寓的兩倍以上,製造業主導工業損失,養殖業推動農業損失。短暫而強烈的 6 小時風暴造成的損失遠高於 24 小時事件,而風暴潮加劇了住宅和車輛的損失。預期年度損失 (EAD) 凸顯了持續的經濟負擔,敦促採取主動防禦措施。
研究得出結論,將高解析度淹水圖與經濟模型相結合,為洪水評估提供了一個可複製的框架,這對高雄市易受颱風影響的環境至關重要。它為有針對性的緩解措施提供了部門特定的資料,但局限性包括簡化的模型可能低估損失以及未考慮長期社會經濟影響。未來的研究應通過額外的洪水動態和更廣泛的影響來精煉模型。
This study evaluates economic flood losses in Kaohsiung, Taiwan, leveraging high-resolution inundation maps to enhance flood risk management and urban resilience. Its objectives are to quantify damages across multiple sectors and provide actionable insights for mitigation. The methodology integrates QGIS-processed high-resolution inundation maps with spatial data on residential, industrial, agricultural, and public assets. Flood scenarios—eight return periods (T), with/without storm surge (SS), twelve precipitation amounts (P), and three durations (6, 12, 24 hours)—were analyzed using depth-damage curves (DDC) to estimate losses in Excel.
Results show individual houses incur over twice the losses of apartments, manufacturing dominates industrial damage, and aquaculture drives agricultural losses. Short, intense 6-hour storms cause significantly higher damages than 24-hour events, while SS amplifies residential and vehicle losses. Expected annual damage (EAD) underscores a persistent economic burden, urging proactive defenses.
The study concludes that combining high-resolution inundation maps with economic models offers a replicable framework for flood assessment, critical for Kaohsiung’s typhoon-prone context. It provides sector-specific data for targeted mitigation, though limitations include potential underestimation from simplified models and omission of long-term socio-economic impacts. Future research should refine models with additional flood dynamics and broader impacts.
Balaian, S. K., Sanders, B. F., & Abdolhosseini Qomi, M. J. (2024). How urban form impacts flooding. Nature Communications, 15(1), 6911. https://doi.org/10.1038/s41467-024-50347-4
Chang, L. F. (2016). Study on Regional Adjustment Mechanism for Flood Damage and System Establishment. Water Resources Planning Institute, Water Resources Agency: Taichung, Taiwan.
Chang, L. F. (2014). Flood Damage Investigation and Analysis in Metropolitan Area. Water Resources Planning Institute, Water Resources Agency: Taichung, Taiwan.
Chen, Y.-J., Lin, H.-J., Liou, J.-J., Cheng, C.-T., & Chen, Y.-M. (2022). Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios in Taiwan. Water, 14(2), Article 2. https://doi.org/10.3390/w14020207
Climate change widespread, rapid, and intensifying – IPCC — IPCC. (2021). Retrieved June 7, 2025, from https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/
Dang, Y., Yang, L., & Song, J. (2024). The Construction of a Crop Flood Damage Assessment Index to Rapidly Assess the Extent of Postdisaster Impact. Remote Sensing, 16(9), Article 9. https://doi.org/10.3390/rs16091527
Fawakherji, M., Blay, J., Anokye, M., Hashemi-Beni, L., & Dorton, J. (2025). DeepFlood for Inundated Vegetation High-Resolution Dataset for Accurate Flood Mapping and Segmentation. Scientific Data, 12(1), 271. https://doi.org/10.1038/s41597-025-04554-3
Friedland, C. J., Orooji, F., Al Assi, A., Flynn, M. L., & Mostafiz, R. B. (2023). Flood damage and shutdown times for industrial process facilities: A vulnerability assessment process framework. Frontiers in Water, 5. https://doi.org/10.3389/frwa.2023.1292564
Grigg, N. S., & Helweg, O. J. (1975). State-of-the-Art of Estimating Flood Damage in Urban Areas. JAWRA Journal of the American Water Resources Association, 11(2), 379–390. https://doi.org/10.1111/j.1752-1688.1975.tb00689.x
Gulf Engineers & Consultants (GEC). (2006). Depth-Damage Relationships for Structures, Contents, and Vehicles and Content-to-Structure Value Ratios (CSVR) in Support of the Donaldsonville to the Gulf, Louisiana, Feasibility Study.
Hsiao, Y.-H., Chen, C.-C., Chao, Y.-C., Li, H.-C., Ho, C.-H., Hsu, C.-T., & Yeh, K.-C. (2022). Development and application of flood impact maps under climate change scenarios: A case study of the Yilan area of Taiwan. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.971609
Kuo, Y.-L., Liu, Y.-M., Chu, H.-J., & Lee, H.-C. (2022). Are the Rich less Prone to Flooding? A Case Study on Flooding in the Southern Taiwan during Typhoon Morakot and Typhoon Fanapi. Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects. https://doi.org/10.5194/nhess-2022-38
Liu, W.-C., Hsieh, T.-H., & Liu, H.-M. (2021). Flood Risk Assessment in Urban Areas of Southern Taiwan. Sustainability, 13(6), Article 6. https://doi.org/10.3390/su13063180
Ministry of Transportation and Communications, R. O. C. (2025, May 29). Ministry of Transportation and Communications, R.O.C. [Text/html]. Ministry of Transportation and Communications, R.O.C.; https://www.motc.gov.tw/en/index
Olsen, A. S., Zhou, Q., Linde, J. J., & Arnbjerg-Nielsen, K. (2015). Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments. Water, 7(1), Article 1. https://doi.org/10.3390/w7010255
Rezaei, H., Macioszek, E., Derakhshesh, P., Houshyar, H., Ghabouli, E., Bakhshi Lomer, A. R., Ghanbari, R., & Esmailzadeh, A. (2023). A Spatial Decision Support System for Modeling Urban Resilience to Natural Hazards. Sustainability, 15(11), Article 11. https://doi.org/10.3390/su15118777
Shi, P., Lyu, K., Li, Z., Yang, T., Xu, C.-Y., Hao, X., & Xiao, J. (2025). A Novel Topography-Based Approach for Real-Time Flood Inundation Mapping. Water Resources Research, 61(2), e2024WR037851. https://doi.org/10.1029/2024WR037851
Song, W., Guan ,Mingfu, Guo ,Kaihua, & and Yu, D. (2025). Rapid flood inundation mapping by integrating deep learning-based image super-resolution with coarse-grid hydrodynamic modeling. Engineering Applications of Computational Fluid Mechanics, 19(1), 2481115. https://doi.org/10.1080/19942060.2025.2481115
Su, W.-R., Lin, Y.-J., Huang, C.-H., Yang, C.-H., & Tsai, Y.-F. (2021). 3D GIS Platform for Flood Wargame: A Case Study of New Taipei City, Taiwan. Water, 13(16), Article 16. https://doi.org/10.3390/w13162211
Theodosopoulou, Z., Kourtis, I. M., Bellos, V., Apostolopoulos, K., Potsiou, C., & Tsihrintzis, V. A. (2022). A Fast Data-Driven Tool for Flood Risk Assessment in Urban Areas. Hydrology, 9(8), Article 8. https://doi.org/10.3390/hydrology9080147
Wang, H. W., Castillo Castro, D. S., & Chen, G. W. (2024). Managing residual flood risk: Lessons learned from experiences in Taiwan. Progress in Disaster Science, 23(100337). https://doi.org/10.1016/j.pdisas.2024.100337
Water Resources Agency. (2024). Third Update of the Flood Potential Map for Kaohsiung City. Ministry of Economic Affairs of Taiwan.
Wing, O. E. J., Bates, P. D., Quinn, N. D., Savage, J. T. S., Uhe, P. F., Cooper, A., Collings, T. P., Addor, N., Lord, N. S., Hatchard, S., Hoch, J. M., Bates, J., Probyn, I., Himsworth, S., Rodríguez González, J., Brine, M. P., Wilkinson, H., Sampson, C. C., Smith, A. M., … Haigh, I. D. (2024). A 30 m Global Flood Inundation Model for Any Climate Scenario. Water Resources Research, 60(8), e2023WR036460. https://doi.org/10.1029/2023WR036460
Wing, O. E. J., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., Neal, J. C., Porter, J. R., & Kousky, C. (2022). Inequitable patterns of US flood risk in the Anthropocene. Nature Climate Change, 12(2), 156–162. https://doi.org/10.1038/s41558-021-01265-6
Woo, R., Orr, B., Blanchard, B., Orr, B., & Blanchard, B. (2024, July 25). Typhoon Gaemi hits Chinese seaboard, widespread flooding feared. Reuters. https://www.reuters.com/world/asia-pacific/typhoon-gaemi-passes-over-taiwan-heads-chinese-coast-2024-07-25/
Yang, S.-Y., Chan, M.-H., Chang, C.-H., & Chang, L.-F. (2018). The Damage Assessment of Flood Risk Transfer Effect on Surrounding Areas Arising from the Land Development in Tainan, Taiwan. Water, 10(4), Article 4. https://doi.org/10.3390/w10040473
Yang, S.-Y., Chen, W.-T., Lin, C.-H., Chang, L.-F., Fang, W.-T., & Jhong, B.-C. (2023). Adaptation strategy with public space for pluvial flood risk mitigation in a densely populated city: A case study in Huwei, Taiwan. Journal of Hydrology: Regional Studies, 48, 101452. https://doi.org/10.1016/j.ejrh.2023.101452
Zhang, H., Fang, W., Zhang, H., & Yu, L. (2021). Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: A case study on the 2014 flood in Lishui city of China. Natural Hazards and Earth System Sciences, 21(10), 3161–3174. https://doi.org/10.5194/nhess-21-3161-2021
Zhang, Z., Giezendanner, J., Mukherjee, R., Tellman, B., Melancon, A., Purri, M., Gurung, I., Lall, U., Barnard, K., & Molthan, A. (2025). Assessing Inundation Semantic Segmentation Models Trained on High- versus Low-Resolution Labels using FloodPlanet, a Manually Labeled Multi-Sourced High-Resolution Flood Dataset. Journal of Remote Sensing, 5, 0575. https://doi.org/10.34133/remotesensing.0575
Zhou, Q., Mikkelsen, P. S., Halsnæs, K., & Arnbjerg-Nielsen, K. (2012). Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. Journal of Hydrology, 414–415, 539–549. https://doi.org/10.1016/j.jhydrol.2011.11.031
經濟部水利署. (2019-a). 水利工程經濟效益分析方法研究(2/2)成果報告書=Economic Benefit Cost Analysis and Evaluation for Water Resources Engineering Projects(2/2). 經濟部水利署. Retrieved May 29, 2025, from https://web.wra.gov.tw/wralib/WraLib/wSite/books_87726
經濟部水利署. (2015-b). 洪水災害損失區域調整機制及系統建置之研究(1/2)(內附光碟). 經濟部水利署. Retrieved May 28, 2025, from https://web.wra.gov.tw/WraLib/wSite/books_80446
經濟部水利署. (2016-c). 洪水災害損失區域調整機制及系統建置之研究—光碟版=Study on Regional Adjustment Mechanism for Flood Damage and System Establishment. 經濟部水利署. Retrieved May 28, 2025, from https://web.wra.gov.tw/WraLib/wSite/books_82151
高雄市114年門牌坐標資料-TWD97—114年1月門牌坐標資料—高雄市政府資料開放. (2025). Retrieved May 23, 2025, from https://data.kcg.gov.tw/dataset/114-kh-address/resource/c92e4af5-7ea0-4920-99fa-7b2bfa43f2b8