簡易檢索 / 詳目顯示

研究生: 黃韋棠
Huang, Wei-Tang
論文名稱: 以微觀力學模擬FeCoNiCrMn高熵合金的潛變機制與力學行為
Micromechanics Modeling of Creep Mechanism and Mechanical Behaviors of FeCoNiCrMn High Entropy Alloy
指導教授: 游濟華
Yu, Chi-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 65
中文關鍵詞: 高熵合金潛變試驗晶體塑性有限元素法內聚力模型晶界裂痕
外文關鍵詞: High-entropy alloys (HEAs), creep fracture, crystal plasticity finite element method, cohesive zone model
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來混合多樣金屬元素而形成的高熵合金引發了廣泛的研究,有別於以往傳統合金以主要金屬元素為主,加入微量次要元素;高熵合金FeCoNiCrMn是以五種金屬元素等比例配置,突破現有金屬調合學限制,且具有優異的機械性質。以往開發金屬中材料機械性質需要精密量測,因此需要大量時間與成本,而近年電腦運算能力顯著提升,數位分身的概念被廣泛的應用在材料科學,航空太空,自駕車與其他各種工程領域中,其主要精神為利用數值模擬分析,相較於實驗分析可大大提升效率,同時提供材料中較難量測的微觀變化。
    本論文提出一個整合型的計算架構於微觀尺度計算合金材料的力學性質,針對高熵合金FeCoNiCrMn進行模擬,設計一套導入晶體塑性有限元素法(Crystal plasticity finite element method, CPFEM)和內聚力模型(Cohesive zone model, CZM)的模擬工具以研究FeCoNiCrMn之高溫潛變效應,本研究考慮晶粒本身的差排滑動與晶界上的開裂與相對滑移,以釐清高熵合金在潛變試驗下之破壞機制與力學行為。
    本研究先針對模型中的材料參數進行分析,並觀察其晶界變化和力學性質,進行模擬分析後進行討論,整理應變率、材料參數、晶界擴散參數和晶界黏度對模型之影響。本研究並發現由於晶粒間的排向不同會導致應力集中的現象發生於晶界,使晶界提早開裂。也針對有無晶界開裂之機制進行分析,有引入晶界效應的情況下,其潛變破壞由晶界效應主導,與潛變實驗相符。根據參數分析結果,設計出與實驗應力應變曲線相符的模型,能針對材料進行高溫潛變模擬,並且可以觀察模型微觀上的機械行為,應力會集中在晶界周圍,同時,與拉伸方向垂直的晶界會開裂,並符合真實材料微觀裂痕,達成與實驗材料相符的應力應變曲線和微觀上晶界變化。
    本研究設計出一套模擬流程架構,以兩大機制為主的模型,可以模擬符合真實材料FeCoNiCrMn潛變的力學行為。未來可依照相同研究方法針對不同高熵合金調整模型後進行模擬,探討高溫下晶粒與晶界的力學行為。

    High entropy alloys (HEAs) have attracted extensive attention due to the complex formation from more than five metal elements and their extraordinary performances, such as lightweight, high ductility in extreme working temperatures. This study studied the intergranular creep fracture of FeCoNiCrMn, by exploiting micromechanical modeling. We considered crystal plasticity and the evolution of dislocation density for grain interior and a cohesive zone model for grain boundary sliding and separation. We developed an integrated computational framework to simulate the mechanical properties of FeCoNiCrMn by implementing UMAT for grain interiors and UEL for grain boundaries in ABAQUS. We first performed a parametrical study to examine the robustness of the model. The simulation results agree well with the experimental measurements. Furthermore, we discussed the effects of strain rate, grain boundary separation, and grain boundary viscosity. We found that the stress concentration occurs at the grain boundaries with different grain orientation, making the grain boundary prone to separate from alleviating this severe strain inhomogeneous. Finally, the competition mechanisms of creep fracture for FeCoNiCrMn were studied. The simulation result suggested that the creep fracture is dominated by grain boundary separation, consistent with the experimental observation. Thus, our model can be applied to study grain interior and grain boundary mechanical behavior at high temperature for different high entropy alloys with great potential in automobile, aerospace, and high-performance alloy design.

    摘要 I 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究目的 9 1.4 論文架構 10 第二章 研究方法 11 2.1 諾頓型潛變(Norton type creep) 11 2.2晶體塑性有限元素法(Crystal Plasticity Finite Element Method) 12 2.2.1. 晶體塑性 12 2.2.2. 晶體塑性理論 16 2.3 內聚力模型(Cohesive Zone Model) 20 2.3.1. 晶界滑移 20 2.3.2. 晶界空孔成形(Grain boundary cavitation) 20 2.3.3. 空孔成核(Cavity nucleation) 22 2.3.4. 空孔生長 (Cavity growth) 23 第三章 模型參數分析 25 3.1 模型設置 25 3.2 模擬結果 27 3.3 模型中晶粒旋轉比較 32 3.4 模型中有無晶界效應比較 35 3.5 參數模擬分析結果 36 3.5.1. 應變率 (strain rate, mathbit{ arepsilon}) 36 3.5.2. 材料參數 (mathbit{Fn}) 40 3.5.3. 晶界擴散參數(D) 43 3.5.4. 晶界黏度 (mathbit{eta}) 46 第四章FeCoNiCrMn拉伸模擬分析 49 4.1 模型設置 49 4.2 模擬結果 52 4.2.1. 應力應變曲線 52 4.2.2. 應力場分布與差排密度(mathbit{ho}) 53 4.2.3. mathbf{t}<mathbf{8000s}時應力場變化 56 第五章 結論與未來展望 58 5.1 結論 58 5.2 未來展望 59 參考文獻 61

    1. Yeh, J.-W. et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 6, 299–303 (2004).
    2. Huang, P.-K., Yeh, J.-W., Shun, T.-T. &Chen, S.-K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 6, 74–78 (2004).
    3. Cantor, B. Multicomponent and high entropy alloys. Entropy 16, 4749–4768 (2014).
    4. Samaei, A. T., Mirsayar, M. M. &Aliha, M. R. M. The microstructure and mechanical behavior of modern high temperature alloys. Eng. Solid Mech. 3, 1–20 (2015).
    5. Gaskell, D. R. Introduction to the thermodynamics of materials. (1995).
    6. Yeh, J. W. Physical Metallurgy of High-Entropy Alloys. JOM vol. 67 2254–2261 (2015).
    7. Tsai, M. H. &Yeh, J. W. High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107–123 (2014).
    8. Applied Mechanics of Solids (A.F. Bower) Chapter 3: Constitutive laws - 3.2 Linear Elasticity. http://solidmechanics.org/text/Chapter3_2/Chapter3_2.htm.
    9. He, Q. &Yang, Y. On lattice distortion in high entropy alloys. Front. Mater. 5, 1–8 (2018).
    10. Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. CURRENT SCIENCE vol. 85 (2003).
    11. Gao, M. C., Liaw, P. K., Yeh, J. W. &Zhang, Y. High-entropy alloys: Fundamentals and applications. High-Entropy Alloys: Fundamentals and Applications (2016). doi:10.1007/978-3-319-27013-5.
    12. Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. des Mater. 31, 633–648 (2006).
    13. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. &Liaw, P. K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010).
    14. Liu, W. et al. High performance DLC/BP and ZnS/YbF3 double-layer protective and antireflective coatings. Journal of Alloys and Compounds vol. 581 526–529 (2013).
    15. Cantor, B., Chang, I. T. H., Knight, P. &Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).
    16. He, J. Y. et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics 55, 9–14 (2014).
    17. Zhang, K. B. et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J. Alloys Compd. 502, 295–299 (2010).
    18. Na, S. M., Yoo, J. H., Lambert, P. K. &Jones, N. J. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys. AIP Adv. 8, (2018).
    19. Miracle, D. B. &Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).
    20. Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014).
    21. Song, H. et al. Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 23404 (2017).
    22. Tsai, K. Y., Tsai, M. H. &Yeh, J. W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 61, 4887–4897 (2013).
    23. Moon, J. et al. On the strain rate-dependent deformation mechanism of CoCrFeMnNi high-entropy alloy at liquid nitrogen temperature. Mater. Res. Lett. 5, 472–477 (2017).
    24. Chokshi, A. H. High temperature deformation in fine grained high entropy alloys. Mater. Chem. Phys. 210, 152–161 (2018).
    25. Murty, K. L., Mohamed, F. A. &Dorn, J. E. Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg. Acta Metall. 20, 1009–1018 (1972).
    26. Chaudhury, P. K. &Mohamed, F. A. Creep and ductility in an Al-Cu solid-solution alloy. Metall. Trans. A 18, 2105–2114 (1987).
    27. Hong, S. I., Moon, J., Hong, S. K. &Kim, H. S. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy. Mater. Sci. Eng. A 682, 569–576 (2017).
    28. He, J. Y. et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics 55, 9–14 (2014).
    29. Yu, C.-H., Huang, C.-W., Chen, C.-S. &Hsueh, C.-H. Micromechanics Modeling of Creep Fracture of High-Temperature Ceramics. in Handbook of Mechanics of Materials 1–58 (Springer Singapore, 2018). doi:10.1007/978-981-10-6855-3_68-1.
    30. Taylor, G. I., Taylor &I., G. The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 145, 362–387 (1934).
    31. Van DerGiessen, E. &Tvergaard, V. Development of final creep failure in polycrystalline aggregates. Acta Metall. Mater. 42, 959–973 (1994).
    32. Bower, A. F. Applied mechanics of solids. (CRC Press, 2009). doi:10.1201/9781439802489.
    33. Hill, R. &Rice, J. R. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20, 401–413 (1972).
    34. Lee, E. H. Elastic-plastic deformation at finite strains. J. Appl. Mech. Trans. ASME 36, 1–6 (1964).
    35. Asaro, R. J. Crystal plasticity. J. Appl. Mech. Trans. ASME 50, 921–934 (1983).
    36. Mecking, H. &Kocks, U. F. Kinetics of flow and strain-hardening. Acta Metall. 29, 1865–1875 (1981).
    37. Khadyko, M., Myhr, O. R., Dumoulin, S. &Hopperstad, O. S. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys. Philos. Mag. 96, 1047–1072 (2016).
    38. Roters, F. et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010).
    39. Ashby, M. F. Boundary defects, and atomistic aspects of boundary sliding and diffusional creep. Surf. Sci. 31, 498–542 (1972).
    40. Rice, J. R. Constraints on the diffusive cavitation of isolated grain boundary facets in creeping polycrystals. Acta Metall. 29, 675–681 (1981).
    41. Onck, P. &Van DerGiessen, E. Microstructurally-based modelling of intergranular creep fracture using grain elements. Mech. Mater. 26, 109–126 (1997).
    42. Onck, P. &Van DerGiessen, E. Growth of an initially sharp crack by grain boundary cavitation. J. Mech. Phys. Solids 47, 99–139 (1998).
    43. Perry, A. J. Cavitation in creep. Journal of Materials Science vol. 9 1016–1039 (1974).
    44. Jiang, X. G., Earthman, J. C. &Mohamed, F. A. Cavitation and cavity-induced fracture during superplastic deformation. Journal of Materials Science vol. 29 5499–5514 (1994).
    45. Tvergaard, V. On the creep constrained diffusive cavitation of grain boundary facets. J. Mech. Phys. Solids 32, 373–393 (1984).
    46. Chokshi, A. H. Cavity nucleation and growth in superplasticity. Mater. Sci. Eng. A 410–411, 95–99 (2005).
    47. Kassner, M. E. &Hayes, T. A. Creep cavitation in metals. Int. J. Plast. 19, 1715–1748 (2003).
    48. Needleman, A. &Rice, J. R. PLASTIC CREEP FLOW EFFECTS IN THE DIFFUSIVE CAVITATION OF GRAIN BOUNDARIES. Acta Metall. 28, 1315–1332 (1980).
    49. Biner, S. B. An analysis of grain boundary sliding and grain boundary cavitation in discontinuously reinforced composites. Acta Mater. 44, 1813–1829 (1996).
    50. Huang, Y. C., Su, C. H., Wu, S. K. &Lin, C. A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys. Entropy 21, (2019).

    下載圖示 校內:2024-06-04公開
    校外:2024-06-04公開
    QR CODE